Answer: Power is 200 W
Explanation: Power P = work done / time used.
P = W/t = mgh/t = 154 kg · 9.81 m/s²· 4 m / 30 s = 201 W
Thermal energy from the coffee is transferred to the mug.
Answer:

t'=1.1897 μs
Explanation:
First we will calculate the velocity of micrometeorite relative to spaceship.
Formula:

where:
v is the velocity of spaceship relative to certain frame of reference = -0.82c (Negative sign is due to antiparallel track).
u is the velocity of micrometeorite relative to same frame of reference as spaceship = .82c (Negative sign is due to antiparallel track)
u' is the relative velocity of micrometeorite with respect to spaceship.
In order to find u' , we can rewrite the above expression as:


u'=0.9806c
Time for micrometeorite to pass spaceship can be calculated as:

(c = 3*10^8 m/s)


t'=1.1897 μs
Answer:
1.21
Explanation:
Heat rise in the body happens due to heat supplied by water to the body.
Heat rise in body = m₁ c₁ ΔT₁
Where m₁ is mass of body and c₁ is its specific heat of body
Heat lost from water to the body = m₂ c₂ ΔT₂
Where m₂ is mass of water and c₂ is its specific heat of water ( c₂ =1 (since water))
Equating both:
15.3 x c₁ x 4.3 = 80.2 x 1 x 4.3
⇒ c₁ = 80.2 / (15.3 x 4.3) = 1.21
Answer:
a. 21.68 rad/s b. 30.78 m/s c. 897 rev/min² d. 1085 revolutions
Explanation:
a. Its angular speed in radians per second ω = angular speed in rev/min × 2π/60 = 207 rev/min × 2π/60 = 21.68 rad/s
b. The linear speed of a point on the flywheel is gotten from v = rω where r = radius of flywheel = 1.42 m
So, v = rω = 1.42 m × 21.68 rad/s = 30.78 m/s
c. Using α = (ω₁ - ω)/t where α = angular acceleration of flywheel, ω = initial angular speed of wheel in rev/min = 21.68 rad/s = 207 rev/min, ω₁ = final angular speed of wheel in rev/min = 1410 rev/min = 147.65 rad/s, t = time in minutes = 80.5/60 min = 1.342 min
α = (ω₁ - ω)/t
= (1410 - 207)/(80.5/60)
= 60(1410 - 207)/80.5
= 60(1203)80.5
= 896.65 rev/min² ≅ 897 rev/min²
d. Using θ = ωt + 1/2αt²
where θ = number of revolutions of flywheel. Substituting the values of the variables from above, ω = 207 rev/min, α = 896.65 rev/min² and t = 80.5/60 min = 1.342 min
θ = ωt + 1/2αt²
= 207 × 1.342 + 1/2 × 896.65 × 1.342²
= 277.725 + 807.417
= 1085.14 revolutions ≅ 1085 revolutions