Answer:The ideal gas law is represented mathematically as: PV=nRT. P- pressure, V- volume, n-number of moles of gas, R- ideal gas constant, T- temperature.
Explanation:The ideal gas law is used as a prediction of the behavior of many gases, when subjected to different conditions.
he ideal gas law has so many limitations.
An increase in the pressure or volume, decreases the number of moles and temperature of the gas.
Empirical laws that led to generation of the ideal gas laws, considered two variables and keeping the others constant. This empirical laws include, Boyle's law, Charles's law, Gay Lusaac's law and Avogadro's law.
Hi , the answer is D because the moon is blocking the sun s rays .
<span />
Answer:
485.76 g of CO₂ can be made by this combustion
Explanation:
Combustion reaction:
2 C₄H₁₀(g) + 13 O₂ (g) → 8 CO₂ (g) + 10 H₂O (g)
If we only have the amount of butane, we assume the oxygen is the excess reagent.
Ratio is 2:8. Let's make a rule of three:
2 moles of butane can produce 8 moles of dioxide
Therefore, 2.76 moles of butane must produce (2.76 . 8)/ 2 = 11.04 moles of CO₂
We convert the moles to mass → 11.04 mol . 44g / 1 mol = 485.76 g
Autoionization Reactions are those reactions in which ions or molecules ionizes spontaneously without adding any external reagent.
For Example,
Autoionization of water.
H₂O + H₂O ⇆ H₃O⁺ + OH⁻
Autoionization reaction of Methanol is shown below,