Answer:
MgSO4.7H2O
Explanation:
Let the formula for the hydrated magnesium sulphate be MgSO4.xH2O
Mass of the hydrated salt (MgSO4.xH2O) = 12.845g
Mass of anhydrous salt (MgSO4) = 6.273g
Mass of water molecule(xH2O) = Mass of the hydrated salt — Mass of anhydrous salt = 12.845 — 6.273 = 6.572g
Now,we can obtain the number of mole of water molecule present in the hydrated salt as follows:
Molar Mass of hydrated salt (MgSO4.xH2O) = 24 + 32 + (16x4) + x(2 + 16) = 24 + 32 + 64 + x(18) = 120 + 18x
Mass of xH2O/ Molar Mass of MgSO4.xH2O = Mass of water / mass of hydrated salt
18x/120 + 18x = 6.572/12.845
Cross multiply to express in linear form
18x x 12.845 = 6.572(120 + 18x)
231.21x = 788.64 + 118.296x
Collect like terms
231.21x — 118.296x = 788.64
112.914x = 788.64
Divide both side by 112.914
x = 788.64 /112.914
x = 7
Therefore the formula for the hydrated salt (MgSO4.xH2O) is MgSO4.7H2O
<span>In the field of science, usually, the product of an experiment is
computed ahead to understand if it reached a specific objective. It would reach
greater than 100% of percent yield if the factors include faster reaction rates;
proper handling of the reactants, no outside contaminants, and the procedure of
the experiment is followed smoothly. It would reach lesser than 100% percent yield
if the experiment is not followed, external factors such as contamination from
the environment (wind, moisture, etc). </span>
Answer:
d. Radon-222
Explanation:
²²⁶₈₈Ra → ²²²₈₆Rn + ⁴₂He
Alpha particle is a helium nucleus with mass number 4 and atomic number 2. According to the law of conversation of mass, the sum of the mass number and atomic number must be equal on both side of the reaction.
Since the mass number of Ra is 226 and that of He is 4. The mass number of the unknown element must be 226 - 4 = 222.
Since the atomic number of Ra is 88 and that of He is 2. The atomic number of the unknown element must be 88 - 2 = 86.
Now looking in the periodic table Radon is the only element with atomic number 86.