Answer:
This question appears incomplete
Explanation:
However, it should be noted that addition of soluble salts generally lowers the freezing point of water hence after the addition, water will no longer freeze at 0°C but lower.
Soluble salts tend to form more ions in water, it is these ions that are responsible for interfering with the hydrogen bonds hence lowering the freezing. Thus, (since each bag are of the same weight) <u>the bag that contains the salt that ionizes more in water will lower the freezing point by the greatest amount</u>.
NOTE: Different weight of the salts could lead to more ions been formed in the water by some salts as against the other.
Answer and Explanation:
The balanced chemical equations are as follows:
The chemical formula of oxalic is 
In the case when oxalic acts reacted with the water so here the oxalic acid eliminates one proton that leads to the development of mono acids
After that, the second step derives that when oxalic acid is in aqueous solution eliminates other proton so it represent the polyprotic acid
Now the chemical equations are as follows:
Elimination of one proton

Now the elimination of other proton

Answer:
8.08 × 10⁻⁴
Explanation:
Let's consider the following reaction.
COCl₂(g) ⇄ CO (g) + Cl₂(g)
The initial concentration of phosgene is:
M = 2.00 mol / 1.00 L = 2.00 M
We can find the final concentrations using an ICE chart.
COCl₂(g) ⇄ CO (g) + Cl₂(g)
I 2.00 0 0
C -x +x +x
E 2.00 -x x x
The equilibrium concentration of Cl₂, x, is 0.0398 mol / 1.00 L = 0.0398 M.
The concentrations at equilibrium are:
[COCl₂] = 2.00 -x = 1.96 M
[CO] = [Cl₂] = 0.0398 M
The equilibrium constant (Keq) is:
Keq = [CO].[Cl₂]/[COCl₂]
Keq = (0.0398)²/1.96
Keq = 8.08 × 10⁻⁴
Answer:
This is due to more hydrogen bonding in ethylene glycol than it is in isopropyl alcohol
Explanation:
The boiling point of isopropyl alcohol is 82.4 °C it contains only a single OH group, hence intermolecular hydrogen bonding is solely responsible for it's boiling point, whereas Ethylene glycol (CH2OHCH2OH) contains 2-OH group and both intermolecular and intramolecular hydrogen bonding are responsible for the higher boiling point of ethylene glycol at 198 °C.
Answer:
Most common insulation materials work by slowing conductive heat flow and--to a lesser extent--convective heat flow. Radiant barriers and reflective insulation systems work by reducing radiant heat gain. To be effective, the reflective surface must face an air space.
Explanation:
To be effective, the reflective surface must face an air space.