Answer:
1. 2Al + Cl2 = Al2Cl2
2 TiCl4 + 2Na = Ti + 2NaCl2
3. H2O2 = H2O + O2
4. Na2S + 2HCl = H2S + 2NaCl
5. Mg(OH)2 + 2HCl = MgCl2 + 2H2O
1. 3O2 = 2O3
A covalent bond means shared electrons between atoms. This is similar to kids sharing markers because the markers (electrons) are being shared between the kids (atoms). Covalent bonds are different than this metaphor because 1) the electrons are constantly moving about while the kids can steal and keep the markers and 2) the electrons and atoms are physically smaller
Answer:
- Nitrogen has four pairs of electrons: 3 bonds and 1 lone pair in the valence shell;
- Electrons repel one another based on the VSEPR theory;
- Nitrogen has a total of 7 protons (its atomic number is 7) in its nucleus.
Explanation:
The shape and the bond orientation of molecules and ions are both explained by the valences shell electron pair repulsion theory (VSEPR).
Ammonia,
, is a molecule which contains three N-H bonds, as well as one lone pair on nitrogen. According to the VSEPR theory, molecules try to acquire a shape which would minimize the repulsion exhibited by the electron clouds present, that is, between the bonding (shared in a bond) and non-bonding (lone pair) electrons.
In VSEPR, our main step is to calculate the steric number, this is the sum of the number of bonds (ignoring the multiplicity of any bond) and the lone pairs on a central atom. In ammonia, we have 3 bonds and 1 lone pair, totaling to a steric number of 4. A steric number of 4 without any lone pairs on a central atom and just bonds would yield a tetrahedral shape with bond angles of
.
Now, in this case, since we have a lone pair instead of a bond, it is repelling stronger decreasing the bond angles to about
.
The greater the number of lone pairs, the lower the angle becomes.
To summarize:
- Nitrogen has four pairs of electrons: 3 bonds and 1 lone pair in the valence shell;
- Electrons repel one another based on the VSEPR theory;
- Nitrogen has a total of 7 protons (its atomic number is 7) in its nucleus.
Answers:
Human activities badly affect carbon cycle. Activities such as burning fossil fuel and deforestation have begun to effect on carbon cycle and the rise of carbon dioxide in atmosphere.
Explanation:
The carbon cycle can be affect when carbon dioxide is either released into atmosphere or remove from atmosphere. When fossil are burnt , carbon is release to the atmosphere at faster rate then it is removed. Natural gas, oil, coal, and other industrial products all are affecting carbon cycle in atmosphere.
Deforestation means permanent removal of trees from forest which cause increase in level of carbon dioxide because no trees longer to absorb carbon dioxide from atmosphere. Which result affect on carbon cycle.