Our values can be defined like this,



The problem can be solved for part A, through the Work Theorem that says the following,

Where
KE = Kinetic energy,
Given things like that and replacing we have that the work is given by
W = Fd
and kinetic energy by

So,

Clearing F,

Replacing the values


B) The work done by the wall is zero since there was no displacement of the wall, that is d = 0.
The centripetal acceleration is given by

where v is the tangential speed and r the radius of the circular orbit.
For the car in this problem,

and r=40 m, so we can re-arrange the previous equation to find the velocity of the car:
Answer:
Pressure applied by the man= 285103.125
or 41.35 
Explanation:
Pressure is defined as the perpendicular force applied per unit area.
i.e. 
Now, 
where,
= mass of the body(man) = 93 kg
= acceleration due to gravity of Earth = 9.81 
covered is equal to the area of both stilts(a man generally stands on two feet)
therefore

and putting in the values, we get,

Now we need to convert to our required units:

(We can get the above result by individually converting kg to lb and meters to inches respectively)
Using the above relations we get,

Answer:
Don't you worry, 'cause everything's gonna be alright, ai-a'ight
Be alright, ai-a'ight
Explanation:
Based on the length of the Ethernet cable and the mass, the tension in the cable can be found to be 80 N.
<h3>How much tension is in the cable?</h3>
The tension in the cable can be found as:
= 4 x mass x length x frequency
Solving for the frequency is:
= 1 / (0.800 / 4)
= 1 / 0.20
= 5.0 Hz
The tension is therefore:
= 4 x 0.20 x 4.00 x 5
= 80N
Find out more on tension at brainly.com/question/14336853
#SPJ4