Answer:
I'm not sure
Explanation:
sorry I'm not smart that's why I have this app
Answer:
Magnetic field, B = 0.004 mT
Explanation:
It is given that,
Charge, 
Mass of charge particle, 
Speed, 
Acceleration, 
We need to find the minimum magnetic field that would produce such an acceleration. So,

For minimum magnetic field,



B = 0.004 T
or
B = 4 mT
So, the magnetic field produce such an acceleration at 4 mT. Hence, this is the required solution.
We have the following equation for height:
h (t) = (1/2) * (a) * t ^ 2 + vo * t + h0
Where,
a: acceleration
vo: initial speed
h0: initial height.
The value of the acceleration is:
a = -g = -9.8 m / s ^ 2
For t = 0 we have:
h (0) = (1/2) * (a) * 0 ^ 2 + vo * 0 + h0
h (0) = h0
h0 = 0 (reference system equal to zero when the ball is hit).
For t = 5.8 we have:
h (5.8) = (1/2) * (- 9.8) * (5.8) ^ 2 + vo * (5.8) + 0
(1/2) * (- 9.8) * (5.8) ^ 2 + vo * (5.8) + 0 = 0
vo = (1/2) * (9.8) * (5.8)
vo = 28.42
Substituting values we have:
h (t) = (1/2) * (a) * t ^ 2 + vo * t + h0
h (t) = (1/2) * (- 9.8) * t ^ 2 + 28.42 * t + 0
Rewriting:
h (t) = -4.9 * t ^ 2 + 28.42 * t
The maximum height occurs when:
h '(t) = -9.8 * t + 28.42
-9.8 * t + 28.42 = 0
t = 28.42 / 9.8
t = 2.9 seconds.
Answer:
The ball was at maximum elevation when:
t = 2.9 seconds.
The specific heat of the substance will be 0.129 J/g°C.
<h3>What is specific heat capacity?</h3>
The amount of heat required to increase a substance's temperature by one degree Celsius is known as specific heat capacity.
Similarly, heat capacity is the relationship between the amount of energy delivered to a substance and the increase in temperature that results.
The given data in the problem is;
Q is the amount of energy necessary to raise the temperature = 3,000.0 j
M is the mass= 0.465 kg.
Δt is the time it takes to raise the temperature.=50°c
s stands for specific heat capacity=?
Mathematically specific heat capacity is given by;

Hence the specific heat of the substance will be 0.129 J/g°C.
To learn more about the specific heat capacity refer to the link brainly.com/question/2530523
<span>To find the gravitational potential energy of an object, we can use this equation:
GPE = mgh
m is the mass of the object in kg
g = 9.80 m/s^2
h is the height of the object in meters
GPE = mgh
GPE = (0.700 kg) (9.80 m/s^2) (1.5 m)
GPE = 10.3 J
The gravitational potential energy of this can is 10.3 J</span>