Answer:
atoms bond together and forms molecules
To develop this problem we will start from the definition of entropy as a function of total heat, temperature. This definition is mathematically described as

Here,
Q = Total Heat
T = Temperature
The total change of entropy from a cold object to a hot object is given by the relationship,

From this relationship we can realize that the change in entropy by the second law of thermodynamics will be positive. Therefore the temperature in the hot body will be higher than that of the cold body, this implies that this term will be smaller than the first, and in other words it would imply that the magnitude of the entropy 'of the hot body' will always be less than the entropy 'cold body'
Change in entropy
is smaller than 
Therefore the correct answer is C. Will always have a smaller magnitude than the change in entropy of the cold object
According to Newton's second law of motion, the acceleration of a body is directly proportional to the force acting on the body and inversely proportional to its mass. The formula for this law is
F=ma
=4000kg * 2m/s 2 =8000N
Answer:
Explanation:
a rigid object in uniform rotation about a fixed axis does not satisfy both the condition of equilibrium .
First condition of equilibrium is that net force on the body should be zero.
or F net = 0
A body under uniform rotation is experiencing a centripetal force all the time so F net ≠ 0
So first condition of equilibrium is not satisfied.
Second condition is that , net torque acting on the body must be zero.
In case of a rigid object in uniform rotation , centripetal force is applied towards the centre ie towards the line joining the body under rotation with the axis .
F is along r
torque = r x F
= r F sinθ
θ = 0 degree
torque = 0
Hence 2nd condition is fulfilled.