Answer
Avogadro's number: One mole of any substance contains 6.022×10²³ molecules
Explanation
While finding the number of moles of oxygen molecules present in 3.65 moles of Na2SO4 the conversion factor used would be Avodagro's number, which is
One mole of any substance contains 6.022×10²³ molecules.
<span>Let's assume
that the oxygen gas has ideal gas behavior.
Then we can use ideal gas formula,
PV = nRT</span>
Where, P is the pressure of the gas (Pa), V is the volume of the gas
(m³), n is the number of moles of gas (mol), R is the universal gas
constant ( 8.314 J mol⁻¹ K⁻¹) and T is temperature in Kelvin.
<span>
P = 2.2 atm = 222915 Pa
V = 21 L = 21 x 10</span>⁻³ m³
n = ?
R = 8.314 J mol⁻¹ K⁻¹
<span>
T = 87 °C = 360 K
By substitution,
</span>222915 Pa x 21 x 10⁻³ m³ = n x 8.314 J mol⁻¹ K⁻<span>¹ x 360 K
n
= 1.56</span><span> mol</span>
<span>
Hence, 1.56 moles of the oxygen gas are </span><span>
left for you to breath.</span><span>
</span>
Work is measured in joules. hope this helps!
Answer:
The answer to your question is pH = 6.3
Explanation:
Data
pH = ?
[H⁺] = 4.73 x 10⁻⁷ M
pH is the measure of the concentration of [H⁺]. pH measures the acidity of the solution. If the value of pH is between 0 and 6.9, the solution is an acid. If the pH is 7.0 the solution is neutral and if the pH is between 7.1 and 14, the solution is an alkali.
Formula
pH = -log[H⁺]
Substitution
pH = -log[4.73 x 10⁻⁷]
-Simplification
pH = - (-6.3)
-Result
pH = 6.3