Answer:
Paleontologists have uncovered new fossils from Tiktaalik roseae, which, while still a fish, is considered a transitional fossil that also has traits common to the first four-footed animals. This more complete picture of Tiktaalik suggests that the creature had strong, mobile hind fins.
Explanation:
hope this helps :P
Given:
K = 0.71 = Kp
The reaction of sulphur with oxygen is
S(s) + O2(g) ---> SO2(g)
initial Pressure 6.90 0
Change -x +x
Equilibrium 6.90-x x
Kp = pSO2 / pO2 = 0.71 = x / (6.90-x)
4.899 - 0.71x = x
4.899 = 1.71x
x = 2.86 atm = pressure of SO2 formed
temperature = 950 C = 950 + 273.15 K = 1223.15 K
Volume = 50 L
Let us calculate moles of SO2 formed using ideal gas equation as
PV = nRT
R = gas constant = 0.0821 L atm / mol K
putting other values
n = PV / RT = 2.86 X 50 / 1223.15 X 0.0821 = 1.42 moles
Moles of Sulphur required = 1.42 moles
Mass of sulphur required or consumed = moles X atomic mass of sulphur
mass of S = 1.42 X 32 = 45.57 grams or 0.04557 Kg of sulphur
Bsjsgsusgsjdgsbsbsjshsgshshs
An an increase in
temperature lead to more effective collisions between reactant particles and an
increase in the rate of a chemical reaction because the number of
molecules with sufficient energy to react increases. The answer is number 3.
Answer:
189.2 KJ
Explanation:
Data Given
wavelength of the light = 632.8 nm
Convert nm to m
1 nm = 1 x 10⁻⁹
632.8 nm = 632.8 x 1 x 10⁻⁹ = 6.328 x 10⁻⁷m
Energy of 1 mole of photon = ?
Solution
Formula used
E = hc/λ
where
E = energy of photon
h = Planck's Constant
Planck's Constant = 6.626 x 10⁻³⁴ Js
c = speed of light
speed of light = 3 × 10⁸ ms⁻¹
λ = wavelength of light
Put values in above equation
E = hc/λ
E = 6.626 x 10⁻³⁴ Js ( 3 × 10⁸ ms⁻¹ / 6.328 x 10⁻⁷m)
E = 6.626 x 10⁻³⁴ Js (4.741 x 10¹⁴s⁻¹)
E = 3.141 x 10⁻¹⁹J
3.141 x 10⁻¹⁹J is energy for one photon
Now we have to find energy of 1 mole of photon
As we know that
1 mole consists of 6.022 x10²³ numbers of photons
So,
Energy for one mole photons = 3.141 x 10⁻¹⁹J x 6.022 x10²³
Energy for one mole photons = 1.89 x 10⁵ J
Now convert J to KJ
1000 J = 1 KJ
1.89 x 10⁵ J = 1.89 x 10⁵ /1000 = 189.2 KJ
So,
energy of one mole of photons = 189.2 KJ