Answer:
2K +F₂→ 2KF
Explanation:
When we balance an equation, we are trying to ensure that the number of atoms of each element is the same on both sides of the arrow.
On the left side of the arrow, there is 1 K atom and 2 F atoms. On the right, there is 1 K and 1 F atom.
Since the number of K atoms is currently balanced, balance the number of F atoms.
K +F₂→ 2KF
Now, that the number of F atoms is balanced on both sides, check if the number of K atoms are balanced.
<u>Left</u>
K atoms: 1
F atoms: 2
<u>Right</u>
K atoms: 2
F atoms: 2
The number of K atoms is not balanced.
2K +F₂→ 2KF
<u>Left</u>
K atoms: 2
F atoms: 2
<u>Right</u>
K atoms: 2
F atoms: 2
The equation is now balanced.
I'm not the best with science but I believe the answer is B. Na.
The answer should be Aegle marmelos
1) Start by standardizing the solution of NaOH by using the solution of H2SO4 whose concentration is known.
2) Equation:
2Na OH + H2SO4 --> Na2 SO4 + 2H2O
3) molar ratios
2 mol NaOH : 1 mol H2SO4
4) Number of moles of H2SO4 in 50.0 ml of 0.0782 M solution
M = n / V => n = M*V = 0.0782 M * 0.050 l = 0.00391 mol H2SO4
5) Number of moles of NaOH
2 moles NaOH / 1mol H2SO4 * 0.00391 mol H2SO4 = 0.00782 mol NaOH
6) Concentration of the solution of NaOH
M = n / V = 0.00782 mol / 0.0184 ml = 0.425 M
7) Standardize the solution of HCl
Chemical reaction:
NaOH + HCl --> NaCl + H2O
8) Molar ratios
1 mol NaOH : 1 mol HCl
9) Number of moles of NaOH in 27.5 ml
M = n / V => n = M * V = 0.425 M * 0.0275 l = 0.01169 moles NaOH
10) Number of moles of HCl
1 mol HCl / 1mol NaOH * 0.01169 mol NaOH = 0.01169 mol HCl
11) Concentration of the solution of HCl
M = n / V = 0.01169 mol / 0.100 l = 0.1169 M
Rounded to 3 significant figures = 0.117 M
Answers:
[NaOH] = 0.425 M
[HCl] = 0.117 M