Answer:
About 547 grams.
Explanation:
We want to determine the mass of copper (II) bicarbonate produced when a reaction produces 2.95 moles of copper (II) bicarbonate.
To do so, we can use the initial value and convert it to grams using the molar mass.
Find the molar mass of copper (II) bicarbonate by summing the molar mass of each individual atom:

Dimensional Analysis:

In conclusion, about 547 grams of copper (II) bicarbonate is produced.
Answer:
29.42 Litres
Explanation:
The general/ideal gas equation is used to solve this question as follows:
PV = nRT
Where;
P = pressure (atm)
V = volume (L)
n = number of moles (mol)
R = gas law constant (0.0821 Latm/molK)
T = temperature (K
According to the information provided in this question;
mass of nitrogen gas (N2) = 25g
Pressure = 0.785 atm
Temperature = 315K
Volume = ?
To calculate the number of moles (n) of N2, we use:
mole = mass/molar mass
Molar mass of N2 = 14(2) = 28g/mol
mole = 25/28
mole = 0.893mol
Using PV = nRT
V = nRT/P
V = (0.893 × 0.0821 × 315) ÷ 0.785
V = 23.09 ÷ 0.785
V = 29.42 Litres
Explanation:
when an iron bar rust is an example of a chemical change in which a new substance is formed and the change is not easily reversible.for iron to rust moisture and air must be present.while when a substance freezes,it can be easily reversed through melting and no new substance is formed.this change is termed a physical change.