Divide the distance traveled by the time it took:
(100 m) / (4.2 s) ≈ 23.8 m/s
<span>anwser will be
F = ma
where
F = force exerted on the bullet
m = mass of the bullet = 5 gm (given) = 0.005 kg.
a = acceleration of the bullet
Substituting appropriately,
F = 0.005a --- call this Equation 1
Next working equation is
Vf^2 - Vo^2 = 2as
where
Vf = velocity of the bullet as it leaves the muzzle = 326 m/sec (given)
Vo = initial velocity of bullet = 0
a = acceleration of bullet
s = length of the rifle's barrel
Substituting appropriately,
326^2 - 0 = 2(a)(0.83)
a = 64,022 m/sec^2
the anwser will be
Substituting this into Equation 1,
F = 0.005(64,022)
F =320.11 Newtons
Hope this helps. </span><span>
</span>
Answer:
Distance = 30m
Displacement = 6m W
Explanation:
Given the following:
Movement 1 = 18m W
Movement 2 = 12m E
Diatance is a scalar quantity with only magnitude and no direction. That is, in Calculating the distance moved by the locomotive, the direction of travel or movement of the object is not considered. It only measures the total amount of movement made during the Time of motion.
Therefore, total distance traveled equals :
Movement 1 + movement 2
18m + 12m = 30m
B) Displacement also measures the movement made by an object. However, Displacement is a vector quantity and therefore, considers both magnitude and direction of travel of the object. Therefore, it measures the overall change in position of the object from its starting position.
Therefore, Displacement of the locomotive equals:
18m W - 12m E = 6m E
420 m of total distance is covered by the skier on travelling from A to D.
Explanation:
As from the picture, it can be seen that first the skier moved from position A to position B. And the distance covered by this movement is 180 m. Then as the skier travels from position B to position C, the distance between these two positions is 140 m from the figure. As distance is a scalar quantity, the direction is not taken into consideration. So only the magnitudes of the distance between those points are added.
Now, the distance between A to B is 180 m and then from B to C is 140 m, atlast from C to D, the distance is given as 100 m.
So, the total distance will be the sum of all the above found distances. Thus, the total distance will be 180+140+100 = 420 m.
As the question is about distance, so no need to write the direction for it.
Thus, the final answer will be 420 m of total distance is covered by the skier on travelling from A to D.
<h3>
Answer:</h3>
6.38 seconds
<h3>
Explanation:</h3>
We are given;
- The force exerted by the runner as 234 N
- Power used = 1100 W
- Distance as 30.0 m
We are required to determine the time taken to run the distance;
- We know that power is the rate of work done
That is;
Power = work done ÷ time
But, work done = Force × distance
Therefore;
Work done = 234 N × 30 m
= 7020 Joules
Therefore, from the formula, Power = work done ÷ time
Time = Work done ÷ power
Thus;
Time = 7020 J ÷ 1100 W
= 6.38 seconds
Hence, the time taken is 6.38 seconds