Answer
given,
wavelength (λ)= 500 n m
thickness of film= 10⁻⁴ cm
refractive index = μ = 1.375
distance traveled is double which is equal to 2 x 10⁻⁴ cm
a) Number of wave


N = 2.91
N = 3
b) phase difference is equal to
Reflection from the first surface has a 180° (½λ) phase change.
There is no phase change for the 2nd surface reflection and there is no phase difference for the 2nd wave having traveled an exact whole number of waves.
net phase difference = 
= 270°
<span>The person is dragging
with a force of 58 lbs at an angle of 27 degrees relating to the ground. We
want to use cosine function to look for the horizontal force component. And
then we can compute for W = (Horizontal Force) x (Distance). We want the
horizontal force component since that is the component that is parallel to the
direction the cart is moving. </span><span>
(cos 27 degrees)(58 lbs) = 51.69 lbs (This is the horizontal
force component.)
W = (51.69 lbs) x (70 ft) = 3618.3 ft*lbs</span>
It can be either C or B
Reasons it can be C: Red and Blue together(if I'm correct in art) is the combined color of two of the 3 primary colors to get a purple/violet color and if said filter is see through or just too dense for the light to even penetrate the said filter(in theory) but all in all purple is the answer with the two primary colors blue and red.
But also, it depends on what kind of filter it is, if the filter is like a screen filter then it will just come out in blue with the slightly different colors of again purple but in a darker tone then the actual eye can see.
Or it can be just C again cause the filter can be a film but that's a bit too far and to complex for right now so I believe it is B
We know, R = V / I
Here, V = 86 V
I = 3 A
Substitute their values,
R = 86 / 3
R = 28.67 Ohm
In short, Your Answer would be 28.67 Ohms
Hope this helps!