Answer:
The speed after being pulled is 2.4123m/s
Explanation:
The work realize by the tension and the friction is equal to the change in the kinetic energy, so:
(1)
Where:
Because the work made by any force is equal to the multiplication of the force, the displacement and the cosine of the angle between them.
Additionally, the kinetic energy is equal to , so if the initial velocity is equal to zero, the initial kinetic energy is equal to zero.
Then, replacing the values on the equation and solving for , we get:
So, the speed after being pulled 3.2m is 2.4123 m/s
Answer: D
Wavelength λ = 7.5 × 10^-11 m
Explanation:
You are given the frequency of an electromagnetic wave to be:
F = 4.0 x 1018 Hz. And the speed of light C to be
C = 3 × 10^8 m/s
From wave speed formula:
Wave speed is the product of waves frequency and wavelength. That is,
V = fλ
Where
f = frequency
λ = wavelength
V = C = speed of light
Substitute the values of the parameters into the formula
C = fλ
3 × 10^8 = 4 × 10^18 × λ
Make λ the subject of formula
λ = (3×10^8)/(4×10^18)
λ = 7.5 × 10^-11 m
Therefore, the wavelength of the wave is 7.5 × 10^-11 m