<span>Ocean tides are highest when the sun, Earth, and the moon
are nearly in a line. That means at the times of New Moon
and Full Moon.</span>
<h2>
Answer: 502.08 J</h2>
Explanation:
The heat (thermal energy) needed in to raise the temperature in a process can be found using the following equation:
(1)
Where:
is the heat
is the mass of the element (<u>water</u> in this case)
is the specific heat capacity of the material. In the case of water is
is the variation in temperature <u>(which is increased in this case)</u>
Knowing this, let's rewrite (1) with these values:
(2)
Finally:
Answer:
Motion maps are used to illustrate the direction and position of an object. Using the motion map, the description of the object position and velocity is as follows:
The object starts its movement from the origin with a large velocity, before moving back to the origin with a smaller velocity. It stops for 1 second in the origin, then moves away with a larger velocity, Finally, it moves back towards the origin with a smaller velocity.
See attachment for the motion map, where the number on each arrow in the map, represents the position of the object.
Note that; the long arrow means large velocity while the short arrow means small velocity
Next, we analyze the direction and position using the arrows
The first arrow shows that the object starts from the origin with a large velocity
The direction and length of the second arrow show that, the object then returned to the origin with a smaller velocity.
There is a dot in front of the second arrow. This dot indicates that the object stops for one second.
The third arrow means that, the object moved from the origin with a larger velocity
The direction and position of the fourth and fifth arrows indicate that the object then moves towards the origin, with a smaller velocity.
Explanation:
Answer:
t = 25.5 min
Explanation:
To know how many minutes does Richard save, you first calculate the time that Richard takes with both velocities v1 = 65mph and v2 = 80mph.

Next, you calculate the difference between both times t1 and t2:

This is the time that Richard saves when he drives with a speed of 80mph. Finally, you convert the result to minutes:

hence, Richard saves 25.5 min (25 min and 30 s) when he drives with a speed of 80mph