Complete question:
Resistor is made of a very thin metal wire that is 3.2 mm long, with a diameter of 0.4 mm. What is the electric field inside this metal resistor? If the potential difference due to electric field between the two ends of the resistor is 10 V.
Answer:
The electric field inside this metal resistor is 3125 V/m
Explanation:
Given;
length of the wire, L = 3.2 mm = 3.2 x 10⁻³ m
diameter of the wire, d = 0.4 mm = 0.4 x 10⁻³ m
the potential difference due to electric field between the two ends of the resistor, V = 10 V
The electric field inside this metal resistor is given by;
ΔV = EL
where;
ΔV is change in electric potential
E = ΔV / L
E = 10 / (3.2 x 10⁻³ )
E = 3125 V/m
Therefore, the electric field inside this metal resistor is 3125 V/m
Answer:
Acceleration, 
Explanation:
Given that,
Height from a ball falls the ground, h = 17.3 m
It is in contact with the ground for 24.0 ms before stopping.
We need to find the average acceleration the ball during the time it is in contact with the ground.
Firstly, find the velocity when it reached the ground. So,

u = initial velocity=0 m/s
a = acceleration=g

It is in negative direction, u = -18.41 m/s
Let a is average acceleration of the ball. Consider, v = and u = -18.41 m/s.

So, the average acceleration of the ball during the time it is in contact is
.
Newton’s second law gives us the relationship of force F,
mass m and acceleration a. The formula is given as:
<span>F = m a -->
1</span>
However we also know that the relationship of mass m,
density ρ, and volume V is:
<span>m = V ρ -->
2</span>
Therefore substituting equation 2 to equation 1:
F = ρ V a = ρ V g
where a is acceleration due to gravity, ρ is density of
water and V is the volume of the casting, therefore:
F = (1x10^-3 kg/cm^3) (4840 cm^3) (9.8 m/s^2)
F = 47.432 kg m/s^2
F = 47.432 N
Going back to equation 1:
47.432 N = m (9.8 m/s^2)
m = 4.84 kg
<span>Hence the weight of the final casting is 4.84 kg</span>
Answer:
a place where someone or something is located or has been put.