costa rica does not have deserts hoped this helped and have a great day:)
Answer:
the mass of the air in the classroom = 2322 kg
Explanation:
given:
A classroom is about 3 meters high, 20 meters wide and 30 meters long.
If the density of air is 1.29 kg/m3
find:
what is the mass of the air in the classroom?
density = mass / volume
where mass (m) = 1.29 kg/m³
volume = 3m x 20m x 30m = 1800 m³
plugin values into the formula
1.29 kg/m³ = <u> mass </u>
1800 m³
mass = 1.29 kg/m³ ( 1800 m³ )
mass = 2322 kg
therefore,
the mass of the air in the classroom = 2322 kg
Answer:
<h2>Magnitude of the second charge is

</h2>
Explanation:
According to columbs law;
F = 
F is the attractive or repulsive force between the charges = 12N
q1 and q2 are the charges
let q1 = - 8.0 x 10^-6 C
q2=?
r is the distance between the charges = 0.050m
k is the coulumbs constant =9*10⁹ kg⋅m³⋅s⁻⁴⋅A⁻²
On substituting the given values
12 = 9*10⁹*( - 8.0 x 10^-6)q2/0.050²
Cross multiplying

It is 10.20 m from the ground.
<u>Explanation:</u>
<u>Given:</u>
m = 0.5 kg
PE = 50 J
We know that the Potential energy is calculated by the formula:

where m is the is mass in kg; g is acceleration due to gravity which is 9.8 m/s and h is height in meters.
PE is the Potential Energy.
Potential Energy is the amount of energy stored when an object is stationary.
Here, if we substitute the values in the formula, we get

50 = 0.5 × 9.8 × h
50 = 4.9 × h

h = 10.20 m
Answer:
D = 25 miles
Explanation:
To solve this problem, we just need to know how much time it took both bicyclists to collide and that will be the same amount of time that the bee flew at 25miles per hour. With those values we could calculate the distance it traveled.
Since both bicyclists collide, we know that Xa=Xb, so:
Xa = V*t = 10*t and Xb = 20 - V*t = 20 - 10*t
10*t = 20 - 10*t Solving for t:
t = 1 hour Now we can calculate the distance for the bee:
D = Vbee * t = 25 * 1 = 25 miles