Answer:
B
Explanation:
A robot's work envelope is its range of movement. It is the shape created when a manipulator reaches forward, backward, up and down. These distances are determined by the length of a robot's arm and the design of its axes. ... A robot can only perform within the confines of this work envelope.
Answer: A
Explanation:
It means the relay is working properly.
Answer:

Explanation:
g = Acceleration due to gravity = 
h = Height of reading = 12 cm
= Density of water = 
Pressure due to height difference is given by

The pressure differential is
.
Answer:
with a square cross section and length L that can support an end load of F without yielding. You also wish to minimize the amount the beam deflects under load. What is the free variable(s) (other than the material) for this design problem?
a. End load, F.
b. Length, L.
c. Beam thickness, b
d. Deflection, δ
e. Answers b and c.
f. All of the above.
Answer:
the heat loss from this insulated wire is less
Explanation:
Given data in question
diameter of cable (d) = 20 mm
( K ) = 1 W/m-k
heat transfer coefficient (h) = 50 W/m²-K
To find out
the heat loss from this insulated wire
solution
we will find out thickness of wire
heat loss is depend on wire thickness also
we have given dia 20 mm
so radius will be d/2 = 20/ 2 = 10 mm
Now we find the critical thickness i.e.
critical thickness = K / heat transfer coefficient
critical thickness = 1 / 50 = 0.02 m i.e. 20 mm
now we can see that critical thickness is greater than radius 10 mm
so our rate of heat loss will be decreasing
so we can say our correct option is (a) less