Answer:
1. cout << "Num: " << songNum << endl;
2. cout << songNum << endl;
3. cout << songNum <<" songs" << endl;
Explanation:
//Full Code
#include <iostream>
using namespace std;
int main ()
{
int songNum;
songNum = 5;
cout << "Num: " << songNum << endl;
cout << songNum << endl;
cout << songNum <<" songs" << endl;
return 0;
}
1. The error in the first cout statement is that variable songnum is not declared.
C++ is a case sensitive programme language; it treats upper case and lower case characters differently.
Variable songNum was declared; not songnum.
2. Cout us used to print a Variable that has already been declared.
The error arises in int songNum in the second cout statement.
3. When printing more than one variables or values, they must be separated with <<
Answer:
capacity = 0.555 mAh
capacity = 3600 mAh
Explanation:
given data
battery = 1800 mAh
OCV = 3.9 V
solution
we get here capacity when it is in series
so here Q = 2C
capacity = 2 × ampere × second ...............1
put here value and we get
and 1 Ah = 3600 C
capacity =
capacity = 0.555 mAh
and
when it is in parallel than capacity will be
capacity = Q1 +Q2 ...............2
capacity = 1800 + 1800
capacity = 3600 mAh
Answer: The exit temperature of the gas in deg C is
.
Explanation:
The given data is as follows.
= 1000 J/kg K, R = 500 J/kg K = 0.5 kJ/kg K (as 1 kJ = 1000 J)
= 100 kPa, 

We know that for an ideal gas the mass flow rate will be calculated as follows.

or, m = 
=
= 10 kg/s
Now, according to the steady flow energy equation:




= 5 K
= 5 K + 300 K
= 305 K
= (305 K - 273 K)
= 
Therefore, we can conclude that the exit temperature of the gas in deg C is
.
<u>the liquid limit</u>
LL=-0.8078x*49.503
LL=-0.8078(25)+49.503
LL=29.308
<u>plasticity index of the soil</u>
PL=217.2%+17.8%/2
PL=17.5
PI=LL-PL
PI=29.308-17.5
PL=11.808
Hope this helps, now you know the answer and how to do it. HAVE A BLESSED AND WONDERFUL DAY! As well as a great rest of Black History Month! :-)
- Cutiepatutie ☺❀❤
Answer:
use the percentage error relation
Explanation:
The percentage error in anything is computed from ...
%error = ((measured value)/(accurate value) -1) × 100%
__
The difficulty with voltage measurements is that the "accurate value" may be hard to determine. It can be computed from the nominal values of circuit components, but there is no guarantee that the components actually have those values.
Likewise, the measuring device may have errors. It may or may not be calibrated against some standard, but even measurement standards have some range of possible error.