I have no idea I need the answer too
Acceleration = ▵v/▵t
Time = d/v
Fisrt calculate time : ( 118/29 ) = 4 seconds
Then calculate acceleration
A = 29/4 = 7.25 m/s²
Now the force.
Force = mass * acceleration.
F= 1,019 * 7.25
F= 7,387 N
If you saturated the solid it will turn into liquid and soon become an air
Answer:0.58 m
Explanation:
The initial velocity of the ball is u = 2.0 m/s
The height of the table is, h = 1.0 m
The ball falls in vertical direction under acceleration due to gravity.
Time taken for ball to hit the floor:
h= ut + 0.5gt² ( from the equation of motion)
1.0 m=2.0 m/s × t+0.5 × 9.8 m/s²× t²
Solving this for t,
t = 0.29 s ( we have neglected the negative value of t)
In the same time, the ball would cover a horizontal distance of :
s = u t
⇒s = 2.0 m/s×0.29 s = 0.58 m
Thus, the landing spot is 0.58 m away from the table.
The equilibrium conditions allow to find the results for the balance forces are:
When the acceleration is zero we have the equilibrium conditions for both linear and rotational motion.
∑ F = 0
∑ τ = 0
Where F are the forces and τ the torques.
The torque is the product of the force and the perpendicular distance to the point of support,
The free-body diagrams are diagrams of the forces without the details of the bodies, see attached for the free-body diagram of the system.
We write the translational equilibrium condition.
F₁ - W₁ - W₂ + F₂ = 0
We write the equation for the rotational motion, set our point of origin at scale 1, and the counterclockwise turns are positive.
F₂ 2 - W₁ 1 - W₂ 1.5 = 0
Let's calculate F₂
F₂ =
F₂ = (m g + M g 1.5)/ 2
F₂ =
F₂ = 558.6 N
We substitute in the translational equilibrium equation.
F₁ = W₁ + W₂ - F₂
F₁ = (m + M) g - F₂
F₁ = (12 +68) 9.8 - 558.6
F₁ = 225.4 N
In conclusion using the equilibrium conditions we can find the forces of the balance are:
Learn more here: brainly.com/question/12830892