Answer:
Amplitude—distance between the resting position and the maximum displacement of the wave
Frequency—number of waves passing by a specific point per second
Period—time it takes for one wave cycle to complete
wavelength λ - the distance between adjacent identical parts of a wave, parallel to the direction of propagation.
Tension - described as the pulling force transmitted axially by the means of a string, a cable, chain, or similar one-dimensional continuous object, or by each end of a rod, truss member, or similar three-dimensional object
<span>An example of the deregulation of a government regulated natural monopoly is where the new ;aw allows consumers to be able to choose between the electricity providers which is the first choice because a deregulation of a government regulated natural monopoly is a way of the rules of having to be remove or reduced when tackling or making use of the government regulated natural monopoly.</span>
To explain, I will use the equations for kinetic and potential energy:

<h3>Potential energy </h3>
Potential energy is the potential an object has to move due to gravity. An object can only have potential energy if 1) <u>gravity is present</u> and 2) <u>it is above the ground at height h</u>. If gravity = 0 or height = 0, there is no potential energy. Example:
An object of 5 kg is sitting on a table 5 meters above the ground on earth (g = 9.8 m/s^2). What is the object's gravitational potential energy? <u>(answer: 5*5*9.8 = 245 J</u>)
(gravitational potential energy is potential energy)
<h3>Kinetic energy</h3>
Kinetic energy is the energy of an object has while in motion. An object can only have kinetic energy if the object has a non-zero velocity (it is moving and not stationary). An example:
An object of 5 kg is moving at 5 m/s. What is the object's kinetic energy? (<u>answer: 5*5 = 25 J</u>)
<h3>Kinetic and Potential Energy</h3>
Sometimes, an object can have both kinetic and potential energy. If an object is moving (kinetic energy) and is above the ground (potential), it will have both. To find the total (mechanical) energy, you can add the kinetic and potential energies together. An example:
An object of 5 kg is moving on a 5 meter table at 10 m/s. What is the objects mechanical (total) energy? (<u>answer: KE = .5(5)(10^2) = 250 J; PE = (5)(9.8)(5) = 245 J; total: 245 + 250 = 495 J</u>)
multiply the six sides of the cube(LB), since length is 2000, then breadth will be 2000 also