Answer:
(a). The average speed is 51.83 m/s.
(b). The average velocity over one revolution is zero.
Explanation:
Given that,
Angular velocity = 110 rev/m
Radius = 4.50 m
(a). We need to calculate the average speed
Using formula of average speed



(b). The average velocity over one revolution is zero because the net displacement is zero in one revolution.
Hence, (a). The average speed is 51.83 m/s.
(b). The average velocity over one revolution is zero.
The first thing you should know for this case is the definition of distance.
d = v * t
Where,
v = speed
t = time
We have then:
d = v * t
d = 9 * 12 = 108 m
The kinetic energy is:
K = ½mv²
Where,
m: mass
v: speed
K = ½ * 1500 * (18) ² = 2.43 * 10 ^ 5 J
The work due to friction is
w = F * d
Where,
F = Force
d = distance:
w = 400 * 108 = 4.32 * 10 ^ 4
The power will be:
P = (K + work) / t
Where,
t: time
P = 2.86 * 10 ^ 5/12 = 23.9 kW
answer:
the average power developed by the engine is 23.9 kW
To be able to determine the original speed of the car, we use kinematic equations to relate the acceleration, distance and the original speed of the car moving.
First, we manipulate the one of the kinematic equations
v^2 = v0^2 + 2 (a) (x) where v = 0 since the car stopped
Writing the equation in such a way that the initial velocity or v0 is written on one side of the equation,
<span>we get v0 = sqrt (2(a)(x))
Substituting the known values,
v0 = sqrt(2(3.50)(30.0))
v0 = 14.49 m/s
</span>
Therefore, before stopping the car the original speed of the car would be 14.49 m/s
Answer:
Explanation:
Answer is in the attachment below: