Answer:
The van't hoff factor of 0.500m K₂SO₄ will be highest.
Explanation:
Van't Hoff factor was introduced for better understanding of colligative property of a solution.
By definition it is the ratio of actual number of particles or ions or associated molecules formed when a solute is dissolved to the number of particles expected from the mass dissolved.
a) For NaCl the van't Hoff factor is 2
b) For K₂SO₄ the van't Hoff factor is 3 [it will dissociate to give three ions one sulfate ion and two potassium ions]
Out of 0.500m and 0.050m K₂SO₄, the van't hoff factor of 0.500m K₂SO₄ will be more.
c) The van't Hoff factor for glucose is one as it is a non electrolyte and will not dissociate.
Answer:
<h2>0.02 moles </h2>
Explanation:
To find the number of moles in a substance given it's number of entities we use the formula

where n is the number of moles
N is the number of entities
L is the Avogadro's constant which is
6.02 × 10²³ entities
We have

We have the final answer as
<h3>0.02 moles</h3>
Hope this helps you
Answer:
Mass = 8 g
Explanation:
Given data:
Mass of MgO formed = 20 g
Mass of oxygen needed = ?
Solution:
Chemical equation:
2Mg + O₂ → 2MgO
Number of moles of MgO:
Number of moles = mass/molar mass
Number of moles = 20 g/ 40 g/mol
Number of moles = 0.5 mol
Now we will compare the moles of MgO and O₂ from balance chemical equation:
MgO : O₂
2 : 1
0.5 : 1/2×0.5 = 0.25 mol
Mass of oxygen required:
Mass = number of moles × molar mass
Molar mass of O₂ is 32 g/mol
Mass = 0.25 mol × 32 g/mol
Mass = 8 g
An educated guess is called estimation