1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
olga_2 [115]
3 years ago
5

Which of the two materials (brittle vs. ductile) usually obtains the highest ultimate strength and why?

Engineering
1 answer:
sveta [45]3 years ago
5 0

Answer:

Explanation:

Ductile materials typically have a higher ultimate strength because they stretch absorbing more energy before breaking. While fragile materials snap in half before larger deformations due to larger loads occur.

It should be noted that when ductile materials stretch their section becomes smaller, and in that reduced section the stresses concentrate.

You might be interested in
A 1000 KVA three phase transformer has a secondary voltage of 208/120. What is the secondary full load amperage?
IceJOKER [234]

Answer:

The three phase full load secondary amperage is 2775.7 A

Explanation:

Following data is given,

S = Apparent Power = 1000 kVA

No. of phases = 3

Secondary Voltage: 208 V/120 V <em>(Here 208 V is three phase voltage and 120 V is single phase voltage) </em>

<em>Since,</em>

<em />

<em />V_{1ph} =\frac{ V_{3ph}}{\sqrt{3} }\\V_{1ph) = \frac{208}{\sqrt{3} }\\<em />

V_{1ph} = 120 V

The formula for apparent power in three phase system is given as:

S = \sqrt{3} VI

Where:

S = Apparent Power

V = Line Voltage

I = Line Current

In order to calculate the Current on Secondary Side, substituting values in above formula,

1000 kVA = \sqrt{3} * (208) * (I)\\1000 * 1000 = \sqrt{3} * (208) * (I)\\I = \frac{1000 * 1000}{\sqrt{3} * (208) }\\ I = 2775.7 A

 

4 0
3 years ago
What's a disadvantage of highest MERV-rated filters?
Arte-miy333 [17]

Answer:

3) the pressure drop across high MERV filters is significant.

Explanation:

MERV (Minimum-Efficiency Reporting Value) is used to measure the efficiency of filter to remove particles. A filter of high MERV can filter smaller particles but this causes an increase in reduced air flow that is an increase in pressure drop. High MERV filters capture more particles causing them to get congested faster and thereby increasing pressure drop.

Excessive pressure drop can cause overheating and lead to damage of the filter. The pressure drop can be reduced by increasing the surface area of the filter.

3 0
3 years ago
Read 2 more answers
A hydraulic jump is induced in an 80 ft wide channel.The water depths on either side of the jump are 1 ft and 10 ft.Please calcu
krek1111 [17]

Answer:

a) 42.08 ft/sec

b) 3366.33 ft³/sec

c) 0.235

d) 18.225 ft

e) 3.80 ft

Explanation:

Given:

b = 80ft

y1 = 1 ft

y2 = 10ft

a) Let's take the formula:

\frac{y2}{y1} = \frac{1}{5} * \sqrt{1 + 8f^2 - 1}

10*2 = \sqrt{1 + 8f^2 - 1

1 + 8f² = (20+1)²

= 8f² = 440

f² = 55

f = 7.416

For velocity of the faster moving flow, we have :

\frac{V_1}{\sqrt{g*y_1}} = 7.416

V_1 = 7.416 *\sqrt{32.2*1}

V1 = 42.08 ft/sec

b) the flow rate will be calculated as

Q = VA

VA = V1 * b *y1

= 42.08 * 80 * 1

= 3366.66 ft³/sec

c) The Froude number of the sub-critical flow.

V2.A2 = 3366.66

Where A2 = 80ft * 10ft

Solving for V2, we have:

V_2 = \frac{3666.66}{80*10}

= 4.208 ft/sec

Froude number, F2 =

\frac{V_2}{g*y_2} = \frac{4.208}{32.2*10}

F2 = 0.235

d) El = \frac{(y_2 - y_1)^3}{4*y_1*y_2}

El = \frac{(10-1)^3}{4*1*10}

= \frac{9^3}{40}

= 18.225ft

e) for critical depth, we use :

y_c = [\frac{(\frac{3366.66}{80})^2}{32.2}]^1^/^3

= 3.80 ft

7 0
3 years ago
Read 2 more answers
Water at 15°C is to be discharged from a reservoir at a rate of 18 L/s using two horizontal cast iron pipes connected in series
Zina [86]

Answer:

0.245 m^3/s

Explanation:

Flow rate through pipe a is 0.4 m3/s Parallel pipes have a diameter D = 30 cm => r = 15 cm = 0.15 m Length of Pipe a = 1000m Length of Pipe b = 2650m Temperature = 15 degrees Va = V / A = (0.4m3/s) / (3.14 (0.15m)^2) = 5.66 m/s h = (f(LV^2)) / D2g (fa(LaVa^2)) / Da2g = (fb(LbVb^2)) / Da2g and Da = Db; fa = fb LaVa^2 = LbVb^2 => La/Lb = Vb^2/Va^2 Vd^2 = Va^2(La/Lb) => Vb = Va(La/Lb)^(1/2) Vb = 5.66 (1000/2650)^(1/2) => 5.66 x 0.6143 = 3.4769 m/s Vb = 3.4769 m/s V = AVb = 3.14(0.15)^2 x 3.4769 m/s = 0.245 m^3/s

5 0
3 years ago
Hello , how are yall:))))
SVEN [57.7K]

Answer:

eh I'm good hbu?????????

6 0
2 years ago
Read 2 more answers
Other questions:
  • A car is traveling at 50 ft/s when the driver notices a stop sign 100 ft ahead and steps on the brake. Assuming that the deceler
    6·1 answer
  • What are probiotic bacteria and how did Danino and his team use this type of bacteria to detect liver cancer?
    15·1 answer
  • A magnesium oxide component must not fail when a tensile stress of 14 MPa is applied. Determine the maximum allowable surface cr
    8·1 answer
  • How to Cancel prescription
    12·1 answer
  • What learning is required to become a mechanical engineer?
    14·1 answer
  • Which process made making copies of technical drawings easier?
    8·1 answer
  • What are the specifications state that all work shall be done?
    10·1 answer
  • What is applied technology?
    14·1 answer
  • Me ayudas plis noce ​
    14·1 answer
  • Invent five new communication method wired or wireless you think would be practical
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!