Answer:
6.37 inch
Explanation:
Thinking process:
We need to know the flow rate of the fluid through the cross sectional pipe. Let this rate be denoted by Q.
To determine the pressure drop in the pipe:
Using the Bernoulli equation for mass conservation:

thus

The largest pressure drop (P1-P2) will occur with the largest f, which occurs with the smallest Reynolds number, Re or the largest V.
Since the viscosity of the water increases with temperature decrease, we consider coldest case at T = 50⁰F
from the tables
Re= 2.01 × 10⁵
Hence, f = 0.018
Therefore, pressure drop, (P1-P2)/p = 2.70 ft
This occurs at ae presure change of 1.17 psi
Correlating with the chart, we find that the diameter will be D= 0.513
= <u>6.37 in Ans</u>
Answer:
the elevation at point X is 2152.72 ft
Explanation:
given data
elev = 2156.77 ft
BS = 2.67 ft
FS = 6.72 ft
solution
first we get here height of instrument that is
H.I = elev + BS ..............1
put here value
H.I = 2156.77 ft + 2.67 ft
H.I = 2159.44 ft
and
Elevation at point (x) will be
point (x) = H.I - FS .............2
point (x) = 2159.44 ft - 6.72 ft
point (x) = 2152.72 ft
Answer:
1791 secs ≈ 29.85 minutes
Explanation:
( Initial temperature of slab ) T1 = 300° C
temperature of water ( Ts ) = 25°C
T2 ( final temp of slab ) = 50°C
distance between slab and water jet = 25 mm
<u>Determine how long it will take to reach T2</u>
First calculate the thermal diffusivity
∝ = 50 / ( 7800 * 480 ) = 1.34 * 10^-5 m^2/s
<u>next express Temp as a function of time </u>
T( 25 mm , t ) = 50°C
next calculate the time required for the slab to reach 50°C at a distance of 25mm
attached below is the remaining part of the detailed solution
Answer:
A.
The power generated by a wind farm is not constant because of irregular wind patterns.
Answer:
116.3 electrons
Explanation:
Data provided in the question:
Time, t = 2.55 ps = 2.55 × 10⁻¹² s
Current, i = 7.3 μA = 7.3 × 10⁻⁶ A
Now,
we know,
Charge, Q = it
thus,
Q = (7.3 × 10⁻⁶) × (2.55 × 10⁻¹²)
or
Q = 18.615 × 10⁻¹⁸ C
Also,
We know
Charge of 1 electron, q = 1.6 × 10⁻¹⁹ C
Therefore,
Number of electrons past a fixed point = Q ÷ q
= [ 18.615 × 10⁻¹⁸ ] ÷ [ 1.6 × 10⁻¹⁹ ]
= 116.3 electrons