1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
bazaltina [42]
4 years ago
9

The wheel and the attached reel have a combined weight of 50lb and a radius of gyration about their center of 6 A k in = . If pu

lley B that is attached to the motor is subjected to a torque of M ft lb = − 50 , determine the velocity of the 200lb crate after the pulley has turned 5 revolutions. Neglect the mass of the pulley

Engineering
1 answer:
marishachu [46]4 years ago
3 0

The complete question is;

The wheel and the attached reel have a combined weight of 50 lb and a radius of gyration about their center of ka = 6 in. If pulley B that is attached to the motor is subjected to a torque of M = 50 lb.ft, determine the velocity of the 200lb crate after the pulley has turned 5 revolutions. Neglect the mass of the pulley.

The image of this system is attached.

Answer:

Velocity = 11.8 ft/s

Explanation:

Since the wheel at A rotates about a fixed axis, then;

v_c = ω•r_c

r_c is 4.5 in. Let's convert it to ft.

So, r_c = 4.5/12 ft = 0.375 ft

Thus;

v_c = 0.375ω

Now the mass moment of inertia about of wheel A about it's mass centre is given as;

I_a = m•(k_a)²

The mass in in lb, so let's convert to slug. So, m = 50/32.2 slug = 1.5528 slug

Also, let's convert ka from inches to ft.

So, ka = 6/12 = 0.5

So,I_a = 1.5528 × 0.5²

I_a = 0.388 slug.ft²

The kinetic energy of the system would be;

T = Ta + Tc

Where; Ta = ½•I_a•ω²

And Tc = ½•m_c•(v_c)²

So, T = ½•I_a•ω² + ½•m_c•(v_c)²

Now, m_c is given as 200 lb.

Converting to slug, we have;

m_c = (200/32.2) slugs

Plugging in the relevant values, we have;

T = (½•0.388•ω²) + (½•(200/32.2)•(0.375ω)²)

This now gives;

T = 0.6307 ω²

The system is initially at rest at T1 = 0.

Resolving forces at A, we have; Ax, Ay and Wa. These 3 forces do no work.

Whereas at B, M does positive work and at C, W_c does negative work.

When pulley B rotates, it has an angle of; θ_b = 5 revs × 2π rad/revs = 10π

While the wheel rotates through an angle of;θ_a = (rb/ra) • θ_b

Where, rb = 3 in = 3/12 ft = 0.25 ft

ra = 7.5 in = 7.5/12 ft = 0.625 ft

So, θ_a = (0.25/0.625) × 10π

θ_a = 4π

Thus, we can say that the crate will have am upward displacement through a distance;

s_c = r_c × θ_a = 0.375 × 4π

s_c = 1.5π ft

So, the work done by M is;

U_m = M × θ_b

U_m = 50lb × 10π

U_m = 500π

Also,the work done by W_c is;

U_Wc = -W_c × s_c = -200lb × 1.5π

U_Wc = -300π

From principle of work and energy;

T1 + (U_m + U_Wc) = T

Since T1 is zero as stated earlier,

Thus ;

0 + 500π - 300π = 0.6307 ω²

0.6307ω² = 200π

ω² = 200π/0.6307

ω² = 996.224

ω = √996.224

ω = 31.56 rad/s

We earlier derived that;v_c = 0.375ω

Thus; v_c = 0.375 × 31.56

v_c = 11.8 ft/s

You might be interested in
Which type of modeling can create virtual designs that can save clients thousands of dollars?
swat32

Answer:

VR Prototyping

VR Prototyping Can Save you Thousands of Dollars.

Explanation:

there you go lad

8 0
3 years ago
Give two causes that can result in surface cracking on extruded products.
Andreas93 [3]

Answer:

1. High friction

2. High extrusion temperature

Explanation:

Surface cracking on extruded products are defects or breakage on the surface of the extruded parts. Such cracks are inter granular.

           Surface cracking defects arises from very high work piece temperature that develops cracks on the surface of the work piece. Surface cracking appears when the extrusion speed is very high, that results in high strain rates and generates heat.

          Other factors include very high friction that contributes to surface cracking an d chilling of the surface of high temperature billets.

6 0
3 years ago
Three tool materials (high-speed steel, cemented carbide, and ceramic) are to be compared for the same turning operation on a ba
Tpy6a [65]

Answer:

Among all three tools, the ceramic tool is taking the least time for the production of a batch, however, machining from the HSS tool is taking the highest time.

Explanation:

The optimum cutting speed for the minimum cost

V_{opt}= \frac{C}{\left[\left(T_c+\frac{C_e}{C_m}\right)\left(\frac{1}{n}-1\right)\right]^n}\;\cdots(i)

Where,

C,n = Taylor equation parameters

T_h =Tool changing time in minutes

C_e=Cost per grinding per edge

C_m= Machine and operator cost per minute

On comparing with the Taylor equation VT^n=C,

Tool life,

T= \left[ \left(T_t+\frac{C_e}{C_m}\right)\left(\frac{1}{n}-1\right)\right]}\;\cdots(ii)

Given that,  

Cost of operator and machine time=\$40/hr=\$0.667/min

Batch setting time = 2 hr

Part handling time: T_h=2.5 min

Part diameter: D=73 mm =73\times 10^{-3} m

Part length: l=250 mm=250\times 10^{-3} m

Feed: f=0.30 mm/rev= 0.3\times 10^{-3} m/rev

Depth of cut: d=3.5 mm

For the HSS tool:

Tool cost is $20 and it can be ground and reground 15 times and the grinding= $2/grind.

So, C_e= \$20/15+2=\$3.33/edge

Tool changing time, T_t=3 min.

C= 80 m/min

n=0.130

(a) From equation (i), cutting speed for the minimum cost:

V_{opt}= \frac {80}{\left[ \left(3+\frac{3.33}{0.667}\right)\left(\frac{1}{0.13}-1\right)\right]^{0.13}}

\Rightarrow 47.7 m/min

(b) From equation (ii), the tool life,

T=\left(3+\frac{3.33}{0.667}\right)\left(\frac{1}{0.13}-1\right)\right]}

\Rightarrow T=53.4 min

(c) Cycle time: T_c=T_h+T_m+\frac{T_t}{n_p}

where,

T_m= Machining time for one part

n_p= Number of pieces cut in one tool life

T_m= \frac{l}{fN} min, where N=\frac{V_{opt}}{\pi D} is the rpm of the spindle.

\Rightarrow T_m= \frac{\pi D l}{fV_{opt}}

\Rightarrow T_m=\frac{\pi \times 73 \times 250\times 10^{-6}}{0.3\times 10^{-3}\times 47.7}=4.01 min/pc

So, the number of parts produced in one tool life

n_p=\frac {T}{T_m}

\Rightarrow n_p=\frac {53.4}{4.01}=13.3

Round it to the lower integer

\Rightarrow n_p=13

So, the cycle time

T_c=2.5+4.01+\frac{3}{13}=6.74 min/pc

(d) Cost per production unit:

C_c= C_mT_c+\frac{C_e}{n_p}

\Rightarrow C_c=0.667\times6.74+\frac{3.33}{13}=\$4.75/pc

(e) Total time to complete the batch= Sum of setup time and production time for one batch

=2\times60+ {50\times 6.74}{50}=457 min=7.62 hr.

(f) The proportion of time spent actually cutting metal

=\frac{50\times4.01}{457}=0.4387=43.87\%

Now, for the cemented carbide tool:

Cost per edge,

C_e= \$8/6=\$1.33/edge

Tool changing time, T_t=1min

C= 650 m/min

n=0.30

(a) Cutting speed for the minimum cost:

V_{opt}= \frac {650}{\left[ \left(1+\frac{1.33}{0.667}\right)\left(\frac{1}{0.3}-1\right)\right]^{0.3}}=363m/min [from(i)]

(b) Tool life,

T=\left[ \left(1+\frac{1.33}{0.667}\right)\left(\frac{1}{0.3}-1\right)\right]=7min [from(ii)]

(c) Cycle time:

T_c=T_h+T_m+\frac{T_t}{n_p}

T_m= \frac{\pi D l}{fV_{opt}}

\Rightarrow T_m=\frac{\pi \times 73 \times 250\times 10^{-6}}{0.3\times 10^{-3}\times 363}=0.53min/pc

n_p=\frac {7}{0.53}=13.2

\Rightarrow n_p=13 [ nearest lower integer]

So, the cycle time

T_c=2.5+0.53+\frac{1}{13}=3.11 min/pc

(d) Cost per production unit:

C_c= C_mT_c+\frac{C_e}{n_p}

\Rightarrow C_c=0.667\times3.11+\frac{1.33}{13}=\$2.18/pc

(e) Total time to complete the batch=2\times60+ {50\times 3.11}{50}=275.5 min=4.59 hr.

(f) The proportion of time spent actually cutting metal

=\frac{50\times0.53}{275.5}=0.0962=9.62\%

Similarly, for the ceramic tool:

C_e= \$10/6=\$1.67/edge

T_t-1min

C= 3500 m/min

n=0.6

(a) Cutting speed:

V_{opt}= \frac {3500}{\left[ \left(1+\frac{1.67}{0.667}\right)\left(\frac{1}{0.6}-1\right)\right]^{0.6}}

\Rightarrow V_{opt}=2105 m/min

(b) Tool life,

T=\left[ \left(1+\frac{1.67}{0.667}\right)\left(\frac{1}{0.6}-1\right)\right]=2.33 min

(c) Cycle time:

T_c=T_h+T_m+\frac{T_t}{n_p}

\Rightarrow T_m=\frac{\pi \times 73 \times 250\times 10^{-6}}{0.3\times 10^{-3}\times 2105}=0.091 min/pc

n_p=\frac {2.33}{0.091}=25.6

\Rightarrow n_p=25 pc/tool\; life

So,

T_c=2.5+0.091+\frac{1}{25}=2.63 min/pc

(d) Cost per production unit:

C_c= C_mT_c+\frac{C_e}{n_p}

\Rightarrow C_c=0.667\times2.63+\frac{1.67}{25}=$1.82/pc

(e) Total time to complete the batch

=2\times60+ {50\times 2.63}=251.5 min=4.19 hr.

(f) The proportion of time spent actually cutting metal

=\frac{50\times0.091}{251.5}=0.0181=1.81\%

3 0
4 years ago
A right triangle has a base of 12 inches and a height of 30 inches, what is the centroid of the triangle?​
aliina [53]

Answer:

the correct answer is 42

4 0
3 years ago
How does emotion affect a persons driving
Elodia [21]

Answer:

if ur mad you may drive faster if ur sad u may drive slower due to the amount of adrenaline and dopamine levels in your body in that given moment

Explanation:

4 0
3 years ago
Other questions:
  • A freshly annealed glass containing flaws of maximum length of 0.1 microns breaks under a tensile stress of 120 MPa. If a sample
    13·1 answer
  • Plz help me
    12·1 answer
  • What is the theoretical density in g/cm3 for Lead [Pb]?
    13·1 answer
  • The host at the end of the video claims that ___________ is crucial to his success as a driver. A. Reaction time B. A safe space
    5·1 answer
  • GMA MIG weiding is a
    7·1 answer
  • Yeah this question might be difficult as most of the brainly community is math. Hope I can find at last one robotics person. ;-;
    13·2 answers
  • John has just graduated from State University. He owes $35,000 in college loans, but he does not have a job yet. The college loa
    6·1 answer
  • Propose any improvements if there are any in brake system
    7·1 answer
  • A jointed arm robot can rotate on the following 6 axes?
    8·1 answer
  • A single-phase load is located 2800 ft from its source. The load draws a current of 86 A and operates on 480 V. The maximum volt
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!