Answer:
4.8 %
Explanation:
We are asked the concentration in % by mass, given the molarity of the solution and its density.
0.8 molar solution means that we have 0.80 moles of acetic acid in 1 liter of solution. If we convert the moles of acetic acid to grams, and the 1 liter solution to grams, since we are given the density of solution, we will have the values necessary to calculate the % by mass:
MW acetic acid = 60.0 g/mol
mass acetic acid (the solute) = 0.80 mol x 60 g / mol = 48.00 g
mass of solution = 1000 cm³ x 1.010 g/ cm³ (1l= 1000 cm³)
= 1010 g
% (by mass) = 48.00 g/ 1010 g x 100 = 4.8 %
Answer:
C) the study of the composition of the atom.
Explanation:
A research can be defined as a systematic investigation or careful consideration of study with respect to a particular problem using scientific methods such as collection of data, documenting critical information, analysis of data, and the establishment of facts in order to reach new conclusions.
Similarly, a basic research is an approach to research that's typically theoritical and it's aimed at developing a theory, searching for the truth or gain a better understanding about a phenomenon, subject, or basic laws on nature.
In this context, an example of basic research is the study of the composition of the atom.
An atom can be defined as the smallest unit comprising of matter that forms all chemical elements. Thus, atoms are basically the building blocks of matters and as such determines or defines the structure of a chemical element.
Generally, atoms are typically made up of three distinct particles and these are protons, neutrons and electrons.
No I wouldn’t be the same
Answer:
C) LiOH + HCl → LiCl + H₂O
General Formulas and Concepts:
<u>Chemistry - Reactions</u>
- Synthesis Reactions: A + B → AB
- Decomposition Reactions: AB → A + B
- Single-Replacement Reactions: A + BC → AB + C
- Double-Replacement Reactions: AB + CD → AD + BC
Explanation:
<u>Step 1: Define</u>
RxN A: 2Na + 2H₂O → 2NaOH + H₂
RxN B: CaCO₃ → CaO + CO₂
RxN C: LiOH + HCl → LiCl + H₂O
RxN D: CH₄ + 2O₂ → CO₂ + 2H₂O
<u>Step 2: Identify</u>
RxN A: Single Replacement Reaction
RxN B: Decomposition Reaction
RxN C: Double Replacement Reaction
RxN D: Combustion Reaction
Is true. Nitrogen gas behaves more like an ideal gas as the
temperature increases. Under normal conditions such as normal pressure and temperature
conditions , most real gases behave qualitatively as an ideal gas. Many
gases such as air , nitrogen , oxygen ,hydrogen , noble gases , and some heavy
gases such as carbon dioxide can be treated as ideal gases within a reasonable tolerance. Generally,
the removal of ideal gas conditions tends to be lower at higher temperatures and lower density (that is at lower pressure ), since the work made by the intermolecular
forces is less important compared to the kinetic energy<span> of the particles, and the size of the molecules is less important
compared to the empty space between them. </span><span>The ideal gas model
tends to fail at lower temperatures or at high pressures, when intermolecular
forces and intermolecular size are important.</span>