OK. So you're pushing on the small box, and on the other side of it, the small
box is pushing on the big box. So you're actually pushing both of them.
-- The total mass that you're pushing is (5.2 + 7.4) = 12.6 kg.
-- You're pushing it with 5.0N of force.
-- Acceleration of the whole thing = (force)/(mass) = 5/12.6 = <em>0.397 m/s²</em> (rounded)
-- Both boxes accelerate at the same rate. So the box farther away from you ...
the big one, with 7.4 kg of mass, accelerates at the same rate.
The force on it to make it accelerate is (mass) x (acceleration) =
(7.4 kg) x (5/12.6 m/s²) = <em>2.936 N.</em>
The only force on the big box comes from the small box, pushing it from behind.
So that same <em>2.936N</em> must be the contact force between the boxes.
The frequencies of light that an atom can emit are dependent on states the electrons can be in. When excited, an electron moves to a higher energy level or orbital. When the electron falls back to its ground level the light is emitted.
hope this helped:)
mark brainliest
A pump jack scaffold must be fitted with two positive gripping mechanisms to prevent slippage. Pump jacks are a uniquely designed scaffold consisting of a platform supported by movable brackets on vertical poles. The brackets are designed to be raised and lowered in a manner similar to an automobile jack. It is important to make sure that pump jack brackets have two positive gripping mechanisms to prevent any failure or slippage.