Answer
-Directly; outside air pressure
Vapor pressure is directly related to the temperature of the liquid. user: in an open system, the vapor pressure is equal to the outside air pressure.
Explanation;
-As the temperature of a system increases, the average kinetic energy of the molecules increases in both the liquid and gas phases.
-A higher average kinetic energy facilitates the escape of molecules from the liquid phase into the gas phase. At the same time, the rate of return of gas phase molecules to the liquid also increases. A new equilibrium point is reached at a higher gaseous vapor pressure. The increase in vapor pressure with temperature is exponential.
Answer:
Explanation:
Let the charge particle have charge equal to +q .
force due to electric field will be along the field that is along y - axis . To balance it force by magnetic force must be along - y axis. ( negative of y axis )
force due to magnetic field = q ( v x B ) , v is velocity and B is magnetic field.
F = q ( v i x B k ) , ( velocity is along x direction and magnetic field is along z axis. )
= (Bqv) - j
= - Bqv j
The force will be along - ve y - direction .
If we take charge as negative or - q
force due to electric field will be along - y axis .
magnetic force = F = -q ( v i x B k )
= + Bqv j
magnetic force will be along + y axis
So it is difficult to find out the nature of charge on the particle from this experiment.
The bed load moves the slowest from all the parts of the stream's sediment. It consists of particles suspended that are suspended and float around the bed. This part is the slowest in motion, as it rolls, and moves with the flow. The particles near the bed are not dissolved so they settle at the bottom and move with the stream.
Answer:
The required pressure is 6.4866 atm.
Explanation:
The given data : -
In the afternoon.
Initial pressure of tire ( p₁ ) = 7 atm = 7 * 101.325 Kpa = 709.275 Kpa
Initial temperature ( T₁ ) = 27°C = (27 + 273) K = 300 K
In the morning .
Final temperature ( T₂ ) = 5°C = ( 5 + 273 ) K = 278 K
Given that volume remains constant.
To find final pressure ( p₂ ).
Applying the ideal gas equation.
p * v = m * R * T


= 657.2615 Kpa = 6.486 atm