Catalytic ozone destruction occurs in the stratosphere where the reactions involving bromine, chlorine, hydrogen, nitrogen and oxygen gases form compounds that destroy the ozone layer. The reactions uses a catalyst (speeds up the reaction) in a two step reaction. considering chlorine the reactions appears as follows;
step 1
Cl + O3 = ClO + O2
step 2
ClO + O = Cl + O2
Where by chlorine is released to destroy the ozone layer, this takes place many times even with the other elements (hydrogen, bromine, nitrogen) and the end result is a completely destroyed Ozone layer
The process by which the heat energy is transmitted between the atoms or molecules is known as conduction.
Explanation:
Conduction is the transfer of heat through the material that are caused by temperature gradient with the material ends in heat flux. The heat transfer done by movement and mixing of a fluid is known as convection.
If a fluid is taken and it is kept as stationary. If there is a temperature gradient across that fluid, there would be transfer of heat that occurs in the fluid. It is negligible when compared to convective heat transfer.
Because of the heat transfer from solid to solid, density of liquid changes and start to move in upward direction due to low density. This type of motion is known as convection currents.
Answer:
3.18 m/s
Explanation:
Given that
Initial speed of the ball, u = 20 m/s
Angle of inclination, θ = 45°
Distance from the ball, h = 50 m
Using equations of projectile to solve this, we have
We start by finding the time of flight, T
T = 2Usinθ/g
T = (2 * 20 * sin45)/9.8
T = (40 * 0.7071) / 9.8
T = 28.284/9.8
T = 2.89 s
Next we find the Range, R
R = u²sin2θ/g
R = (20² * sin 90) / 9.8
R = (400 * 1) / 9.8
R = 400/9.8 = 40.82 m
Distance the gk must cover
40.82 - 50 m
-9.18 m or 9.18 m in the opposite direction.
Speed of the GK = d/t
9.18 / 2.89 = 3.18 m/s
L = illuminance
A = surface
i = intensity
L = i / A ==: i = L * A
i = 6 lux * 4 m^2 = 24 lumen