Answer:
The velocity of the truck after this elastic collision is 15.7 m/s
Explanation:
It is given that,
Mass of the car,
Mass of the truck,
Initial velocity of the car,
Initial velocity of the truck, u₂ = 0
After the collision the velocity of the car is, v₁ = -11 m/s
Let v₂ is the velocity of the truck after this elastic collision. Using the conservation of momentum as :
So, the velocity of the truck after this elastic collision is 15.7 m/s. Hence, the correct option is (c).
Answer:
C). Take your foot off the gas pedal. Then brake lightly until you are moving at low speed.
Explanation:
While driving on roads of rural areas, if our right wheel moves off the pavement, we should always hold the steering wheel firmly and then take our foot off the gas pedal, then apply brake lightly until we are moving at a low speed.
When our wheels drift off the pavement area, we should not panic and yank. And instead of turning the wheel back in the left direction towards the road, it is always safer to take off our foot from the gas pedal and then apply brakes slowly. When our vehicle slows down check the incoming traffic behind us and then we should slowly move back on to the pavement.
Answer:
Tension in the supporting cable is = 4,866 N ≅4.9 KN
Explanation:
First of all, we need to understand that tension is a force, so the motion law
F = Ma applies perfectly.
From Newtons third law of motion, action and reaction are equal and opposite. This means that the force experienced by the elevator, is equal to the tension experienced by the spring.
Parameters given:
Mass of load = 1650 kg
Acceleration of load = ?
The acceleration of the load can be obtained by diving the change in velocity by the time taken. But we need to know the time taken for the motion to 41 m.
Time taken = distance covered / velocity
= = 3.73 seconds
∴Acceleration = ( initial velocity - final velocity )/ time taken
Note: Final velocity is = 0 since the body came to a rest.
Acceleration = = 2.95m/
Force acting on the cable = mass of elevator × acceleration of elevator
= 1650 × 2.95 = 4869.5 kg ≅ 4.9 KN
The answer is B. good luck :)
A and B, one wavelength is crest too crest