Answer:
distance cover is = 102.53 m
Explanation:
Given data:
speed of object is 17.1 m/s


from equation of motion we know that

where d_1 is distance covered in time t1
so
=


where d_2 is distance covered in time t2


distance cover is = 213.31 - 110.78 = 102.53 m
Data:

n (Wave node)
V (Wave belly)
L (Wave length)
<span>The number of bells is equal to the number of the harmonic emitted by the string.
</span>

Wire 2 → 2º Harmonic → n = 2







Wire 1 → 1º Harmonic or Fundamental rope → n = 1



If, We have:
V = 42L
Soon:



Answer:
<span>The fundamental frequency of the string:
</span>
21 Hz
To calculate the specific heat capacity of an object or substance, we can use the formula
c = E / m△T
Where
c as the specific heat capacity,
E as the energy applied (assume no heat loss to surroundings),
m as mass and
△T as the energy change.
Now just substitute the numbers given into the equation.
c = 2000 / 2 x 5
c = 2000/ 10
c = 200
Therefore we can conclude that the specific heat capacity of the block is 200 Jkg^-1°C^-1
Answer:
Yes
Explanation:
It is possible for sedimentary rocks to be converted to igneous rocks. Under conditions of high temperature and pressure, sedimentary rocks can be broken down into igneous rock by melting this rock type.
When the rock is broken down, it forms melt which when cooled and solidifies will form igneous rocks.
Sedimentary rocks are formed from the breaking down of pre-existing rocks through the action of weathering, erosion and sediment transportation. Within a basin, the sediments are compacted and lithified.
When this is subjected to intense pressure and temperature, the rock hardens and might further break down to melt.
Amalgamating is the coating of zinc plate with mercury.