<span>The pythagorean theorem addresses the length of the hypotenuse in relation to the length of the legs. The square root of the length of the hypotenuse is equal to the sum of one leg squared plus the other leg squared. In other words, A squared plus B squared equals C squared where A and B are the lengths of the legs of the triangle and C is the length of the hypotenuse.</span>
Answer:

Explanation:
The torque applied by a force can be calculated as

where
F is the magnitude of the force
d is the length of the arm
is the angle between the direction of the force and the arm
In this problem, we have
F = 15 N
d = 2.0 m

Substituting into the equation, we find

Answer:

Explanation:
GIVEN
diameter = 15 fm =
m
we use here energy conservation

there will be some initial kinetic energy but after collision kinetic energy will zero

on solving these equations we get kinetic energy initial
J ..............(i)
That is, the alpha particle must be fired with 35.33 MeV of kinetic energy. An alpha particle with charge q = 2 e
and gains kinetic energy K =e∆V ..........(ii)
by accelerating through a potential difference ∆V
Thus the alpha particle will
just reach the
nucleus after being accelerated through a potential difference ∆V
equating (i) and second equation we get
e∆V = 35.33 Me V

Answer:
20 Yards
Explanation:
|---20----|
| |
| 50 |50
|---D--->|
Start End
Total displacement(D) 20 yards (East).
Answer:
-6.49 m/s
Explanation:
This is doppler effect.
The equation is;
F_l = [(v + v_l)/(v + v_s)]F_s
Where;
F_l is frequency observed by the listener
v is speed of sound
v_l is speed of listener
v_s is speed of source of the sound
F_s is frequency of the source of the sound
In this question, the source of the sound is the moving vehicle.
Thus;
F_l = F_beat + F_s
We are given beat frequency (f_beat) as 5 Hz while source frequency (F_s) as 260 Hz.
So,
F_l = 5 + 260
F_l = 265 Hz
Since listener is sitting by car, thus; v_l = 0 m/s
Thus,from our doppler effect equation, let's make v_s the subject;
v_s = F_s[(v + v_l)/F_l] - v
Speed of sound has a value of v = 344 m/s
Thus;
v_s = 260[(344 + 0)/265] - 344
v_s = -6.49 m/s
This value is negative because the source is moving towards the listener