
Given ,
initial velocity , u = 20 m/s
final velocity , v = 60 m/s
time taken = 2 seconds
Now ,

hope helpful~
Answer:
The minimum thickness of the soap bubble for destructive interference to occur is 225.56 nm.
Explanation:
Given;
wavelength of light, λ = 600 nm
The minimum thickness of the soap bubble for destructive interference to occur is given by;

where;
n is refractive index of soap film = 1.33

Therefore, the minimum thickness of the soap bubble for destructive interference to occur is 225.56 nm.
To solve this problem it is necessary to apply the concepts related to Normal Force, frictional force, kinematic equations of motion and Newton's second law.
From the kinematic equations of motion we know that the relationship of acceleration, velocity and distance is given by

Where,
Final velocity
Initial Velocity
a = Acceleration
x = Displacement
Acceleration can be expressed in terms of the drag coefficient by means of
Frictional Force
Force by Newton's second Law
Where,
m = mass
a= acceleration
Kinetic frictional coefficient
g = Gravity
Equating both equation we have that



Therefore,


Re-arrange to find x,

The distance traveled by the car depends on the coefficient of kinetic friction, acceleration due to gravity and initial velocity, therefore the three cars will stop at the same distance.
Constant speed along the inclined surface = 30 m / 4 s = 7.5 m/s
Vertical speed = inclined speed * sin(45) = 7.5 *√2 / 2 = 5.3 m/s
Answer: 5.3 m/s
Answer:
Explanation below.
Explanation:
It should be understood that transparency is caused through or by the transmission of light waves. This means that, If or when the energy known as the vibrational energy of a light wave is passed through the object, then the object appears clear, or transparent. And when or If the energy only causes vibrations in the surface before reflecting off the object, then the object will appear opaque, that is nontransparent.