Answer:
D, Im not very sure about this but I would say D
Explanation:
I tried
Answer: 0.55 m/s
Explanation:
This situation is related to projectile motion (also called parabolic motion), where the main equations are as follows:
(1)
(2)
Where:
is the horizontal displacement of the pencil
is the pencil's initial velocity
since we are told the pencil rolls <u>horizontally</u> before falling
is the time since the pencil falls until it hits the ground
is the initial height of the pencil
is the final height of the pencil (when it finally hits the ground)
is the acceleration due gravity, always acting vertically downwards
Begining with (1):
(3)
(4)
Finding
from (2):
(5)
(6)
Substituting (6) in (4):
(7)
Isolating
:
(8)
(9)
Finally:
Answer:
1. It may change the direction of an object in motion.
2. It may cause change in velocity of an object in motion.
Explanation:
1.It may change the direction of an object in motion.
When an object is in motion,an applied force on that object may change its direction.
For example, a sailboat moving eastward, can suddenly change its direction by interaction of a storm wind blowing form the south.
2. It may cause change in velocity of an object in motion .
A force applied to an object in motion can increase or decrease its speed. When the force is applied to the object in motion in the direction of that object, its velocity may increase.
On the other hand, when the force is applied in the opposite direction to the object in motion, its velocity may reduce.
Answer:
= 0.55 m
Explanation:
A standing wave is characterized by anti-nodes and nodes.
Antinodes are points on a standing wave at maximum amplitude, while nodes are points on the standing wave that are stationary and have zero amplitude.
The distance between two adjacent nodes or two adjacent anti-nodes is equivalent to half the wavelength.
Therefore, in this case the half wavelength is 27.5 cm.
Thus, wavelength = 27.5 × 2
= 55 cm
<u>= 0.55 m</u>
Answer:
Have a quick snack an hour before to get the energy, warm up