1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
ahrayia [7]
3 years ago
12

Cycloheptatrienone is stable, but cyclopentadienone is so reactive that it can't be isolated. Taking into account the polarity o

f the carbonyl group, draw a resonance structure of cyclopentadienone that illustrates a reason for its instability.

Chemistry
1 answer:
Lorico [155]3 years ago
3 0

Answer and Explanation:

The resonance contributor in cyclopentadienone (as shown in the attachment below) results into the compound having a positive charge on the carbonyl group, C=O which accounts for a highly reactive anti-aromatic 4π system. And this illustrates the reason for its instability.

You might be interested in
Draw the structure of the fat or oil that would result when a glycerol molecule is
charle [14.2K]

Glycerol will react with 3 butanoic acid molecule to produce glyceryl tributyrate.

Explanation:

You may find the chemical reaction and the structure of molecules in the attached picture.

Learn more about:

triglyceride

brainly.com/question/875089

brainly.com/question/11595668

#learnwithBrainly

3 0
3 years ago
Answer please????? Thank you
snow_tiger [21]
Can’t have anything in Detroit
7 0
3 years ago
Determine the limiting reactant (lr) and the mass (in g) of nitrogen that can be formed from 50.0 g n2o4 and 45.0 g n2h4. some p
Licemer1 [7]
                                                   N2O4(l) + 2 N2H4(l) → 3 N2(g) + 4 H2O(g)
1) to calculate the limiting reactant you need to pass grams to moles.
<span> moles is calculated by dividing mass by molar mass
</span>
mass of N2O4: 50.0 g 
molar mass of <span>N2O4 = 92.02 g/mol
</span><span>molar mass of N2H4 = 32.05 g/mol.
</span>mass of N2H4:45.0 g

moles N2O4=50.0/92.02 g/mol= 0,54 mol of N2O4
moles N2H4= 45/32.05 g/mol= 1,40 mol of <span><span>N2H4

</span> 2)</span>
By looking at the balanced equation, you can see that 1 mol of N2O4 needs 2 moles of N2H4 to fully react . So to react  0,54 moles of N2O4, you need 2x0,54 moles of <span>N2H4 moles
</span><span>N2H4 needed = 1,08 moles.
You have more that 1,08 moles </span><span>N2H4, so this means the limiting reagent is not N2H4, it's </span>N2O4. The molecule that has molecules that are left is never the limiting reactant.

3) 1 mol of N2O4 reacting, will produce 3 mol of N2 (look at the equation)
There are 0,54 mol of N2O4 available to react, so how many moles will produce of N2?
1 mol N2O4------------3 mol of N2
0,54 mol N2O4--------x
x=1,62 mol of N2

4) the only thing left to do is convert the moles obtained, to grams.
We use the same formula as before, moles equal to mass divided by molar mass.
moles= \frac{grams}{molar mass}             (molar mass of N2= 28)
1,62 mol of N2= mass/ 28
mass of N2= 45,36 grams

4 0
3 years ago
CaC12 * 3H20 is correctly named
ki77a [65]

Answer:

calcium chloride deihydrate

4 0
3 years ago
Instructions
ivann1987 [24]

Answer:

I got a 100 with this, sorry if this is not what you want just trying to help

Explanation:

1. This experiment was to find how mass and speed effect KE. This is important because if you were in a situation where you needed something to go higher, you would know to add more or less of mass/speed.  

To test mass, we filled the bean bag with a certain amount of water, then dropped it. After, you recorded how high it made the bean bag go. The same with speed, but same amount in the bottle, just dropped from different heights.  

My hypothesis is when you have more mass, the KE will be greater. This is also the same with speed, if it is dropped from a higher place, the bean bag will launch farther than the last time.  

2. Data I collected from the lab was like my hypothesis explained. When the height of the bottle increased, it made the bean bag go higher than the last. And I tested 4 different masses, 0.125 kg, 0.250kg, 0.375kg and 0.500kg. Each time the bean bag went higher on a larger mass.  

A lot of times on the speed test, the bean bag would go higher than the bottle drop point, but not every time. Also, when it was dropped from the same height each time, some results varied quite a bit, like when it was dropped from 1.28 the results were 1.14 then 1.30 1.30. Mass on the other hand was all in the same number range, only once the numbers were a bit off from each other.  

3.  Some formulas I used were KE= ½ mv^2 and Ht v^2/2g. The first was to calculate the kinetic energy of an object, m=mass v=speed. Second was for finding out what height I needed to drop something to reach a certain speed, Ht=Height and g= Gravitational Acceleration of 9.8 m/s^2.  

I used these to figure out tables that showed relationships between different things like mass and KE or speed and height. The whole time I was doing the lab, my data was going up, when there was more mass/speed there were higher values in the table.  

This means that my hypothesis at the beginning was correct, more of m/s means KE will increase proportionally because they are all linear. I found it surprising when the bean bag height went over the water bottle drop mark.  

4.     To conclude, my hypothesis matched my data. The data values went up when more mass or speed was added. This means if I were in a situation where I needed more kinetic energy for something, I would know to increase mass or the speed of the object giving it energy.  

The reason that this hypothesis is correct is when you have more mass, you have more energy. So, when you drop let's say a baseball, it isn’t that heavy so it would only launch the bean bag so far. But a bowling ball is very heavy and has lots of energy when falling because of that, it would make the bean bag go very high.  

To make this experiment better, I would use a smoother material for the lever so energy wouldn’t be lost by friction from wood rubbing together. Also, maybe a scanner or video camera to more accurately record how far the bean bag went. All of these would help the lab get more precise results, maybe they could be used in a future lab.

8 0
3 years ago
Other questions:
  • What is the pressure exerted by 3.00 mol of ar gas with a volume of 50.0 l at 25.0ºc (298.2 k)?
    11·1 answer
  • 5. Rocks and sediment change their form as they move through the rock cycle. Which change
    12·1 answer
  • If an atom has no electric charge, what can be said about the number of protons and electrons it contains?
    10·1 answer
  • Enlista cuatro compuestos del carbono,naturales y sintéticos, de uso en la vida cotidiana
    13·2 answers
  • When nitrogen and magnesium form an ionic bond, what is the formula?
    14·1 answer
  • How many moles of sulfur will be needed to oxidize 3 moles of zinc to zinc sulfide
    14·1 answer
  • 13.0 g of ammonium chloride in 500 g of water. What is the new BP? (NH,CI=53.491g/mol)
    8·1 answer
  • 6) Which layer was older? The Biology book or the<br> headphones?
    12·1 answer
  • How would doubling the height of an object change the object's potential
    12·1 answer
  • Which of these statements is true about photons?
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!