The final volume of the gas is 73.359 mL
<h3 />
Given :
A sample gas has an initial volume of 72.0 mL
The work done = 141.2 J
Pressure = 783 torr
The objective is to determine the final volume of the gas.
Since, the process does 141.2 J of work on its surroundings at a constant pressure of 783 Torr. Then, the pressure is external.
Converting the external pressure to atm; we have
External Pressure P
:
= 783 torr × 
= 1.03 atm
The work done W = 
The change in volume ΔV= 
ΔV = 
ΔV = 
ΔV = 0.001359 L
ΔV = 1.359 mL
The initial volume = 72.0 mL
The change in volume V is ΔV = V₂ - V₁
- V₂ = - ΔV - V₁
multiply both sides by (-), we have:
V₂ = ΔV + V₁
= 1.359 mL + 72.0 mL
= 73.359 mL
Therefore, the final volume of the gas is 73.359 mL .
Learn more about volume here:
brainly.com/question/27100414
#SPJ4
The answer is a!..................
The answer is: 4) " 2.7 * 10⁵ mg " .
________________________________________________________
Explanation:
________________________________________________________
Since all answer choices given are in "mg" ("milligrams"); we need to convert our given value, "0.27 kg" ("kilograms") to "mg" ("milligrams").
________________________________________________________
Note the following "exact value" conversions:
________________________________________________________
1000 mg = 1 g ;
1000 g = 1 kg.
(0.27 kg) (1000 g / 1 kg) (1000 mg/1 g) = __?__ mg ;
_____________________________________________________
The units of "kg", and "g" cancel to "1" and we are left with:
________________________________________________
0.27 * 1000 * 1000 mg = 270,000 mg = 2.7 * 10<span>⁵ </span> mg ; which is:
_______________________________________________________
→ Answer choice: # 4 .
_______________________________________________________
1.98 × 10^<span>-11</span><span> J i just took it this is the right awnser</span>
Answer:
Polar molecules typically do not conduct electricity as well as ionic molecules. This is because charges in polar molecules due to unequal sharing of electrons are not as strong as the charges on ions