Answer:
4.87g
Explanation:
Step 1:
Data obtained from the question. This includes the following:
Mass of solution = 0.35kg
Molality = 0.238 m
Mass of NaCl =..?
Step 2:
Determination of the number of mole of NaCl in the solution.
Molality of a solution is simply defined as the mole of solute per unit kg of the solvent. It is given as:
Molality = mol of solute /mass of solvent (kg)
With the above formula, we calculate the mole of NaCl present in the solution as follow:
Molality = mol of solute /mass of solvent (kg)
0.238 = mol of NaCl /0.35
Cross multiply
mol of NaCl = 0.238 x 0.35
mol of NaCl = 0.0833 mol
Step 3:
Determination of the mass of NaCl in 0.0833 mol of NaCl.
This is illustrated below:
Number of mole NaCl = 0.0833 mol
Molar Mass of NaCl = 23 + 35.5 = 58.5g/mol
Mass of NaCl =..?
Mass = number of mole x molar Mass
Mass of NaCl = 0.0833 x 58.5
Mass of NaCl = 4.87g
Therefore, 4.87g of NaCl is contained in the solution.
Say that you have 100³
instead of writing and solving 100x100x100 three times to solve it, you can just write 100³
the exponents in scientific notation make the whole process easier.
Answer:
![[Cl^-]=232.3\frac{mgCl^-}{L}](https://tex.z-dn.net/?f=%5BCl%5E-%5D%3D232.3%5Cfrac%7BmgCl%5E-%7D%7BL%7D)
Explanation:
Hello,
In this case, we can represent the chemical reaction as:

In such a way, since the mass of the obtained silver chloride is 93.9 mg, we can compute the chloride ions in the ground water by using the following stoichiometric procedure whereas the molar mass of chloride ions and silver chloride are 35.45 g/mol and 143.32 g/mol respectively:

Finally, for the given volume of water in liters (0.100L), we compute the required concentration:
![[Cl^-]=\frac{23.2mgCl^-}{0.100L}\\](https://tex.z-dn.net/?f=%5BCl%5E-%5D%3D%5Cfrac%7B23.2mgCl%5E-%7D%7B0.100L%7D%5C%5C)
![[Cl^-]=232.3\frac{mgCl^-}{L}](https://tex.z-dn.net/?f=%5BCl%5E-%5D%3D232.3%5Cfrac%7BmgCl%5E-%7D%7BL%7D)
Best regards.
Answer:
Option D. Saturated alkane
Explanation:
To know which option is correct, it is important that we know what saturated and unsaturated compounds are in this context.
Saturated hydrocarbons are compounds which has only carbon to carbon single bonds (C–C) in its chain. A very good example of such compound is the Alkanes.
Unsaturated hydrocarbons are compounds which has either a carbon to carbon double bond (C=C) or a carbon to carbon triple bond (C≡C) in its chain. Examples of such compounds include alkenes and alkynes.
Now, let us answer the question given above bearing the meaning of saturated and unsaturated compounds in mind.
The compound given above contains only carbon to carbon (C–C) single bond.
Therefore, the compound is a saturated alkane.
Answer:
(C). is the answer, I think