Answer:
V₂ = 1.5 L
Explanation:
Given data:
Initial volume of balloon = 1.76 L
Initial temperature = 295 K
Final temperature = 253.15 K
Final volume = ?
Solution:
According to this law, The volume of given amount of a gas is directly proportional to its temperature at constant number of moles and pressure.
Mathematical expression:
V₁/T₁ = V₂/T₂
V₁ = Initial volume
T₁ = Initial temperature
V₂ = Final volume
T₂ = Final temperature
Now we will put the values in formula.
V₁/T₁ = V₂/T₂
V₂ = V₁T₂/T₁
V₂ = 1.76 L ×253.15 K / 295 K
V₂ = 445.54 L.K /295 K
V₂ = 1.5 L
Answer:
The estimated feed rate of logs is 14.3 logs/min.
Explanation:
The product of the process is 2000 tons/day of dry wood pulp, of 85 wt% of cellulose. That represents (2000*0.85)=1700 tons/day of cellulose.
That cellulose has to be feed by the wood chips, which had 47 wt% of cellulose in its composition. That means you need (1700/0.47)=3617 tons/day of wood chips to provide all that cellulose.
Th entering flow is wood chips with 45 wt% of water. This solution has an specific gravity of 0.640.
To know the specific gravity of the wood chips we have to write a volume balance. We also know that Mw=0.45*M and Mc=0.55*M.

The specific gravity of the wood chips is 0.494.
The average volume of a log is

The weight of one log is

To provide 3617 ton/day of wood chips, we need


The feed rate of logs is 14.3 logs/min.
To calculate for the number of moles of SnO2 in the sample, we need the value of the products from the reaction. Since we do not have that data, we can assume that all of the sample is SnO2. Then, we are given the molecular mass of the sample, 151g/mol.
So, the number of moles is 3g / 151 g/mol = 0.0199 moles SnO2
<span>hexa stands for 6, so this molecule has 1 sulfur atom, surrounded by 6 fluorine atoms.</span>