Answer:
Mass = 112.54 g
Explanation:
Given data:
Mass of copper = 18 g
How much copper(II) nitrate formed = ?
Solution:
Cu + 2AgNO₃ → Cu(NO₃)₂ + 2Ag
Number of moles of copper:
Number of moles = mass/ molar mass
Number of moles = 18 g/ 29 g/mol
Number of moles = 0.6 mol
Now we will compare the moles of Cu with Cu(NO₃)₂ .
Cu : Cu(NO₃)₂
1 : 1
0.6 : 0.6
Mass of Cu(NO₃)₂ :
Mass = number of moles × molar mass
Mass = 0.6 mol × 187.56 g/mol
Mass = 112.54 g
The question is incomplete, the complete question is:
Write the net ionic equation for the below chemical reaction:
(c):
<u>Answer:</u> The net ionic equation is
<u>Explanation:</u>
Net ionic equation is defined as the equations in which spectator ions are not included.
Spectator ions are the ones that are present equally on the reactant and product sides. They do not participate in the reaction.
(c):
The balanced molecular equation is:
The complete ionic equation follows:
As ammonium and chloride ions are present on both sides of the reaction. Thus, they are considered spectator ions.
The net ionic equation follows:
Answer:
H₂S; CO₂; SiH₄
Explanation:
London dispersion forces are larger in molecules that are large and have more atoms or electrons.
A. H₂O or H₂S
H₂S. S is below O in the Periodic Table, so it is the larger atom. Its electrons are more polarizable.
B. CO₂ or CO
CO₂. CO₂ has more atoms. It is also linear, so the molecules can get close to each other and maximize the attractive forces.
C. CH₄ or SiH₄
CH₄. Si is below C in the Periodic Table, so it is the larger atom. Its electrons are more polarizable.