It’s soft which makes It low energy
<span>Answer: option B. 3.07 g
Explanation:
1) given reaction:
S(s) + O₂ (g) → SO(g)
2) Balanced chemical equation:
</span><span>2S(s) + O₂ (g) → 2SO(g)
3) Theoretical mole ratios:
2 mol S : 1 mol O₂ : 2 mol SO
3) number of moles of 4.5 liter SO₂ at</span><span> 300°C and 101 kPa
use the ideal gas equation:
pV = nRT
with V = 4.5 liter
p = 101 kPa
T = 300 + 273.15 K = 573.15 K
R = 8.314 liter×kPa / (mol×K)
=> n = pV / (RT) =
n = [101 kPa × 4.5 liter] / [8.314 (liter×kPa) / (mol×K) × 573.15 K ]
n = 0.0954 mol SO
4) proportion with the theoretical ratio S / SO
2 mol S x
-------------- = ----------------------
2 mol SO 0.0954 mol SO
=> x = 0.0954 mol S.
5) Convert mol of S to grams by using atomic mass of S = 32.065 g/mol
mass = number of moles × atomic mass
mass = 0.0954 mol × 32.065 g/mol = 3.059 g of S
6) Therefore the answer is the option B. 3.07 g
</span>
The molarity of the stock Mn²⁺ ions is 0.0288 M
Based on the dilution formula;
- The molarity of A is 0.00144 M
- The molarity of B is 0.0000576 M
- The molarity of C is 0.000001152 M
<h3>What is the molarity of a solution?</h3>
The molarity of a solution is the number of moles of a solute dissolved in a given volume of solution in liters.
- Molarity = number of moles/volume
The molarity of the stock solution is:
moles of Mn²⁺ ions = mass / molar mass
molar mass of Mn²⁺ ions = 55.0 g/mol
moles of Mn²⁺ ions = 1.584 / 55
moles of Mn²⁺ ions = 0.0288 moles
molarity of Mn²⁺ ions = 0.0288 / 1
molarity of Mn²⁺ ions = 0.0288 M
The dilution formula is used to determine the molarities of A, B, and C.
C₁V₁ = C₂V₂
C₂ = C₁V₁ / V₂
Where;
- C₁ = initial molarity
- V₁ = initial volume
- C₂ = final molarity
- V₂ = final volume
Molarity of A = 50 * 0.0288 / 1000
Molarity of A = 0.00144 M
Molarity of B = 10 * 0.00144 / 250
Molarity of B = 0.0000576 M
Molarity of C = 10 * 0.0000576 / 500
Molarity of C = 0.000001152 M
Learn more about molarity at: brainly.com/question/17138838
#SPJ1