Answer:
Explanation:
combustion reacts with oxygen
Answer:
-1.82 °C
Explanation:
Step 1: Given data
- Mass of NaCl (solute): 33.9 g
- Mass of water (solvent): 578 g = 0.578 kg
- Freezing point depression constant for water (Kb): -1.82 °C/m
Step 2: Calculate the molality of the solution
We will use the following expression.
m = mass of solute / molar mass of solute × kg of solvent
m = 33.9 g / 58.44 g/mol × 0.578 kg
m = 1.00 m
Step 3: Calculate the freezing point depression (ΔT)
The freezing point depression is a colligative property that, for a non-dissociated solute, can be calculated using the following expression:
ΔT = Kb × m
ΔT = -1.82 °C/m × 1.00 m
ΔT = -1.82 °C
Answer:
A
Explanation:
I'm assuming this question implies that the surface area is in relation to the volume of the pieces. In that case, the SMALLER the size of each piece, the larger the surface area. This is because more particles are able to fit into the container if they are smaller, leading to more surface area. Since more pieces can fit into the container, MORE collisions happen according to collision theory. I cannot add a link, but for a helpful analogy, look up "How To Speed Up Chemical Reactions (and get a date) - Aaron Sams.
The chemical at the heart of the air bag reaction is called sodium azide, or NaN3. CRASHES trip sensors in cars that send an electric signal to an ignitor. The heat generated causes sodium azide to decompose into sodium metal and nitrogen gas, which inflates the car's air bags.