1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Serggg [28]
3 years ago
6

A Ferris wheel starts at rest and builds up to a final angular speed of 0.70 rad/s while rotating through an angular displacemen

t of 4.9 rad. What is its average angular acceleration
Physics
1 answer:
PilotLPTM [1.2K]3 years ago
4 0

Answer:

The average angular acceleration is 0.05 radians per square second.

Explanation:

Let suppose that Ferris wheel accelerates at constant rate, the angular acceleration as a function of change in angular position and the squared final and initial angular velocities can be clear from the following expression:

\omega^{2} = \omega_{o}^{2} + 2 \cdot \alpha\cdot (\theta-\theta_{o})

Where:

\omega_{o}, \omega - Initial and final angular velocities, measured in radians per second.

\alpha - Angular acceleration, measured in radians per square second.

\theta_{o}, \theta - Initial and final angular position, measured in radians.

Then,

\alpha = \frac{\omega^{2}-\omega_{o}^{2}}{2\cdot (\theta-\theta_{o})}

Given that \omega_{o} = 0\,\frac{rad}{s}, \omega = 0.70\,\frac{rad}{s} and \theta-\theta_{o} = 4.9\,rad, the angular acceleration is:

\alpha = \frac{\left(0.70\,\frac{rad}{s} \right)^{2}-\left(0\,\frac{rad}{s} \right)^{2}}{2\cdot \left(4.9\,rad\right)}

\alpha = 0.05\,\frac{rad}{s^{2}}

Now, the time needed to accelerate the Ferris wheel uniformly is described by this kinematic equation:

\omega = \omega_{o} + \alpha \cdot t

Where t is the time measured in seconds.

The time is cleared and obtain after replacing every value:

t = \frac{\omega-\omega_{o}}{\alpha}

If \omega_{o} = 0\,\frac{rad}{s},  \omega = 0.70\,\frac{rad}{s} and \alpha = 0.05\,\frac{rad}{s^{2}}, the required time is:

t = \frac{0.70\,\frac{rad}{s} - 0\,\frac{rad}{s} }{0.05\,\frac{rad}{s^{2}} }

t = 14\,s

Average angular acceleration is obtained by dividing the difference between final and initial angular velocities by the time found in the previous step. That is:

\bar \alpha = \frac{\omega-\omega_{o}}{t}

If \omega_{o} = 0\,\frac{rad}{s},  \omega = 0.70\,\frac{rad}{s} and t = 14\,s, the average angular acceleration is:

\bar \alpha = \frac{0.70\,\frac{rad}{s} - 0\,\frac{rad}{s} }{14\,s}

\bar \alpha = 0.05\,\frac{rad}{s^{2}}

The average angular acceleration is 0.05 radians per square second.

You might be interested in
What is the Ultraviolet Catastrophe?​
Sholpan [36]

The ultraviolet catastrophe was the prediction of late 19th century/early 20th century classical physics that an ideal black body (also blackbody) at thermal equilibrium will emit radiation in all frequency ranges, emitting more energy as the frequency increases.

7 0
3 years ago
Red light of wavelength 651 nm produces photoelectrons from a certain photoemissive material. Green light of wavelength 521 nm p
Mnenie [13.5K]

Answer:

material work function is 0.956 eV

Explanation:

given data

red wavelength 651 nm

green wavelength 521 nm

photo electrons = 1.50 × maximum kinetic energy

to find out

material work function

solution

we know by Einstein photo electric equation  that is

for red light

h ( c / λr ) = Ф +  kinetic energy

for green light

h ( c / λg ) = Ф +  1.50 × kinetic energy

now from both equation put kinetic energy from red to green

h ( c / λg ) = Ф +  1.50 × (h ( c / λr ) - Ф)

Ф =( hc / 0.50) × ( 1.50/ λr  - 1/ λg)

put all value

Ф =( 6.63 ×10^{-34} (3 ×10^{8} )  / 0.50) × ( 1.50/ λr  - 1/ λg)

Ф =( 6.63 ×10^{-34} (3 ×10^{8} ) / 0.50 ) × ( 1.50/ 651×10^{-9}   - 1/ 521 ×10^{-9})

Ф = 1.5305  ×10^{-19} J  × ( 1ev / 1.6 ×10^{-19} J )

Ф = 0.956 eV

material work function is 0.956 eV

4 0
3 years ago
Read 2 more answers
Can someone help me with physics;((
vladimir2022 [97]

Answer: vf= 51 m/s and d= 112 m

Explanation: solution attached

4 0
3 years ago
how does the composition of a mixture of hydrogen and oxygen differ of hydrogen and oxygen differ from the composition of a comp
mafiozo [28]
In a mixture, there will be a solute and solvent. The hydrogen and oxygen are still two different atoms that just mixed together. But in a compound, the hydrogen and oxygen have a bond, making a new and bigger molecule. A mixture can easily be separated by physical means but a compound isn't.
6 0
3 years ago
Wat would happen if a feather and a ball were released from the same height at the same time? Gravity Experiments for Kids – Sci
solniwko [45]

Answer:

They would land at the same time

Explanation:

They would land at the same exact time.

As weird, impossible and unbelievable as it appears. When in a vacuum, every weight, body and material when released from the same height would land on the ground at the same time. This also means that like in the question, a feather and a ball would land at the same time. And just for illustrations as well, a feather and a car would land at the same time as well.

6 0
3 years ago
Other questions:
  • What is a characteristic of nuclear fusion but not nuclear fission?
    11·2 answers
  • If a marathon runner averages 9.51 mi/hr, how long does it take him to run a 26.220-mile marathon. Express your answers in hours
    8·1 answer
  • Based on this activity, is kinetic energy always transformed into potential energy?
    7·2 answers
  • Stems tend to grow in Or against the direction of gravity
    5·1 answer
  • Define Momentum? ......
    13·2 answers
  • If 1 m = 100 cm , then how many cm^2 are there in a m^2 ?? please hel[p
    14·2 answers
  • A boat of mass 225 kg drifts along a river at a speed of 21 m/s to the west.
    12·1 answer
  • Calculate the heat added to 3kg of water if the temperature increases from 30 C to 60 C.
    15·1 answer
  • Your best friend has very low energy levels and complains of not being able to sleep at night. Determine the BMI score that woul
    6·1 answer
  • write a conclusion to the selectivity in which you completely and intelligently describe the characteristics of an object that i
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!