Answer: 0°
Explanation:
Step 1: Squaring the given equation and simplifying it
Let θ be the angle between a and b.
Given: a+b=c
Squaring on both sides:
... (a+b) . (a+b) = c.c
> |a|² + |b|² + 2(a.b) = |c|²
> |a|² + |b|² + 2|a| |b| cos 0 = |c|²
a.b = |a| |b| cos 0]
We are also given;
|a+|b| = |c|
Squaring above equation
> |a|² + |b|² + 2|a| |b| = |c|²
Step 2: Comparing the equations:
Comparing eq( insert: small n)(1) and (2)
We get, cos 0 = 1
> 0 = 0°
Final answer: 0°
[Reminders: every letters in here has an arrow above on it]
Answer:
Move slowly and reach bottom later.
Explanation:
Viscosity is termed as the thickness or consistency of any liquid or semi liquid. It is related to the internal friction of the substance.
When several liquids are poured down with equal path lengths then the liquid will high viscosity will reach the bottom latter while one with less viscosity.
The internal friction of the molecules tends to keep them together making its consistency more thick. Thus when it will slope down from a certain height it will take more time to reach down.
-- Gravity makes a falling object fall 9.8 m/s faster every second.
-- So, it reaches the speed of 30 m/s in (30/9.8) = 3.06 seconds after it's dropped.
-- The distance an object falls from rest is D = 1/2 (acceleration) (time)²
D = 1/2 (9.8 m/s²) (3.06 sec)²
D = (4.9 m/s²) (9.37 sec²)
<em>D = 45.8 meters</em>
Notice that we don't care how high the building is. The problem works just as long as the object can reach 30 m/s before it hits the ground. That turns out to be anything higher than 45.8 meters for the drop . . . maybe something like 13 floors or more.
Now I'll go a little farther for you ! Writing the last paragraph made me a little curious and uncomfortable. So I went and looked up the world's tallest buildings . . . and I found out that this problem could never happen !
The tallest building in the world now is the Burj Khalifa, in Dubai. It has 163 floors, and it's 828 meters high ! That's 2,717 feet. It's gonna be a long time before there's a building that's 1125 meters tall, like this problem says. That's close to 3700 feet . . . I've had flying lessons where I wasn't that far off the ground !
V0=0m/s (initially at rest)
t=6,7s
s=1/4mi=402,336m
s=(a*t^2)/2 -> a=2*s/t^2 -> a=2*402,336m/(6,7s)^2
a=804,672/44,89=17,93 m/s^2
<span>v=v0+at
</span>v=0+17,93 m/s^2 * 6,7s = 120,131 m/s = 432,4716 km/h
By definition we have that the force for time is equal to the product of the mass for the change in speed.
We have then that
F * (delta t) = m * (delta v)
Clearing the mass
m = (F * (delta t)) / (delta v)
Substituting the values
m = ((3.00) * (4.00)) / (7.50-6.00) = 8
answer
The mass of the moving object is 8Kg