Bruh whatttt sjskskskskdk
Answer:
(a): The cyclist is behind the car.
(b): The speed of the car are Vf= 31.97 m/s.
Explanation:
f= 440 Hz
f'= 415 Hz
Vo= 1/3 Vf
Vf= ?
V= 343.2 m/s
f'= f* ( (V-(-Vo) / (V-(-Vf) )
clearing Vf
:
Vf= 31.97 m/s
Vo= 10.65 m/s
The height need to change by 4 to double the final velocity.
<h3>Final velocity of the object</h3>
The final velocity of an object during a free fall is related to maximum height of fall as given the equation below.
v = √2gh
v² = 2gh
v²/h = 2g
v₁²/h₁ = v₂²/h₂
when v₂ = 2v₁, change in height is calculated as;
h₂ = h₁v₂²/v₁²
h₂ = (h₁ (2v₁)²) / (v₁)²
h₂ = 4h₁v₁² / v₁²
h₂ = 4h₁
Thus, the height need to change by 4 to double the final velocity.
Learn more about final velocity here: brainly.com/question/25905661
#SPJ1
Answer:
The total momentum before and after collision is 72000 kg-m/s.
Explanation:
Given that,
Mass of car = 1200 kg
Velocity of car = 10 m/s
Mass of truck = 2000 kg
Velocity of truck = 30 m/s
Using conservation of momentum
The total momentum before the collision is equal to the total momentum after collision.

Where,
=mass of car
=velocity of car
=mass of truck
=velocity of truck
Put the value into the formula



Now, The total momentum before collision is



The total momentum after collision is



Hence, The total momentum before and after collision is 72000 kg-m/s.
Answer:
The correct option is;
C. 1,715 m
Explanation:
We are given the information from the group of teen at the City edge
Time of arrival of explosion sound = 5 s after sighting
Time of sighting explosion = 5 s before hearing the boom
Speed of sound in air ≈ 343 m/s
Speed of light = 299,792 km/s
Therefore, distance covered by sound in 5 seconds is given by the following equation;


Hence Distance = 343 m/s × 5 s = 1715 m
To check, we compare the time it would take for the light to cover 1715 m
That is
which is instantaneous hence the distance can be approximated by the time duration for the speed of sound.
Therefore, the distance of the students from the factory is approximately 1,715 m