To solve this problem we will apply the linear motion kinematic equations. We will find the two components of velocity and finally by geometric and vector relations we will find both the angle and the magnitude of the vector. In the case of horizontal speed we have to



The vertical component of velocity is

Here,
h = Height
g = Gravitational acceleration
t = Time
= Vertical component of velocity



The direction of the velocity will be given by the tangent of the components, then



The magnitude is given vectorially as,



Therefore the angle is 55.59° and the velocity is 26.37m/s
If the temperature increases, then pressure increases too. (T<span>he molecules in the gas move faster, exerting a greater force. This </span>increases t<span>he </span>pressure<span>.)</span>
Part a)
Magnitude of electric field is given by force per unit charge



Part b)
Electrostatic force on the proton is given as
F = qE


PART C)
Gravitational force is given by



PART d)
Ratio of electric force to weight


Answer:
The rate of change of distance is defined as speed.
Explanation:
The speed is defined as the rate of change of distance.
Speed = distance/ time
When we know the distance and the time, we get the value of speed. So, e know that who is moving fast or slow.
hen a graph is pltted beteen the distance and time, the slope of the graph gives the value of speed. So, by checking the slopes, hoseslope ismore, the speed is more and thusit is moving faster.
So, i agree with the statement.