Answer:
<h2>
15m/s</h2>
Explanation:
The equation for a traveling wave as expressed as y(x, t) = A cos(kx −
t) where An is the amplitude f oscillation,
is the angular velocity and x is the horizontal displacement and y is the vertical displacement.
From the formula;
where;

Before we can get the transverse speed, we need to get the frequency and the wavelength.
frequency = 1/period
Given period = 2/15 s
Frequency = 
frequency = 1 * 15/2
frequency f = 15/2 Hertz
Given wavelength
= 2m
Transverse speed 

Hence, the transverse speed at that point is 15m/s
During the first phase of acceleration we have:
v o = 4 m/s; t = 8 s; v = 13 m/s, a = ?
v = v o + a * t
13 m/s = 4 m / s + a * 8 s
a * 8 s = 9 m/s
a = 9 m/s : 8 s
a = 1.125 m/s²
The final speed:
v = ?; v o = 13 m/s; a = 1.125 m/s² ; t = 16 s
v = v o + a * t
v = 13 m/s + 1.125 m/s² * 16 s
v = 13 m/s + 18 m/s = 31 m/s
Since the frequency of sound in a medium is constant, therefore, the concert-goers would hear the low notes and high notes at the same time.
<h3>What is a dispersive medium?</h3>
A dispersive medium is a medium which spreads out or disperses a substance passing through it.
Since CO2 is a dispersive medium, it means sound waves passing through it would be dispersed based on wavelength.
The note of a sound depends on its frequency, the higher the frequency, the higher the note.
Frequency of sound is constant, therefore, the concert-goers would hear the low notes and high notes at the same time.
Learn more about dispersion of sound at: brainly.com/question/781734
Answer:
by a rocking chair, a bouncing ball, a vibrating tuning fork, a swing in motion, the Earth in its orbit around the Sun, and a water wave.
Explanation: