"The uncertainty<span> in </span>velocity<span> is Δv=1.05⋅105m/s . According to the Heisenberg </span>Uncertainty<span> Principle, you cannot measure simultaneously with great precision both the momentum and the position of a particle. m - the mass of an electron - 9.10938⋅10−31kg."
-socratic.com</span>
ccording to Michigan State University, heat is created when molecules in the liquid move in different directions and bang into one another. These fast moving particles hit the side of the container where they are located. Heat conduction causes the heat from the liquid to be transferred to the container. The container gets hotter while the liquid gets colder. The liquid also loses heat as the surface area is exposed to air. The air gets heated while the container and the cup cool down.
A thermos container keeps liquids hot because the tight lid prevents heat from escaping the container. The core of the thermos is also filled with insulation, which does not conduct heat as well, so the liquid inside the cup does not cool down as quickly. Most thermos containers also feature reflective exteriors that limit the heat lost to radiation. A Styrofoam cup is made up of 95 percent air. This air conducts heat, which draws the warmth from the liquid into the cu
Answer:
refractors and reflectors
Explanation:
Answer:
151 g/mol
Explanation:
When a nonvolatile substance is added to a solvent, the freezing point of the solvent is changed, which is called cryoscopy. When temperature change can be calculated by:
ΔT = Kf*W
Where Kf is the molal freezing point constant of the solvent and W is the molality of the solution.
For cyclohexane, Kf = 20.2 °C/molal, and the freezing point is 6.4 °C, so:
6.4 - 1.05 = 20.2 * W
20.2W = 5.35
W = 0.26485 molal
The molality is:
W = m1/m2*M1
Where m1 is the mass of the solute (in g), m2 is the mass of the solvent (in kg), and M1 is the molar mass of the solute. So:
0.26485 = 2.00/0.05M1
0.0132425M1 = 2.00
M1 = 151 g/mol