1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
RideAnS [48]
3 years ago
14

Three bulbs are connected in series to a 4.5 V battery. The second bulb burns out. The

Physics
1 answer:
Oksi-84 [34.3K]3 years ago
3 0

Answer:

0v

Explanation:

You might be interested in
A 215-kg merry-go-round in the shape of a uniform, solid, horizontal disk of radius 1.50 m is set in motion by wrapping a rope a
Misha Larkins [42]

Answer:

303.9481875 N

Explanation:

t = Time taken = 2 seconds

F = Force

r = Radius = 1.5 m

I = Moment of Inertia

\alpha = Angular Acceleration

Torque

\tau=F\times r

\tau=I\times \alpha

\\\Rightarrow F\times r=I\times \alpha\\\Rightarrow F=\frac{I\times \alpha}{r}

Angular velocity

\omega=rev/s\times 2\pi\\\Rightarrow \omega=0.6\times 2\pi\\\Rightarrow \omega=3.76991\ rad/s

Angular acceleration

\alpha=\frac{\omega}{t}\\\Rightarrow \alpha=\frac{3.76991}{2}\\\Rightarrow \alpha=1.88495\ rad/s^2

I=\frac{1}{2}mr^2\\\Rightarrow I=\frac{1}{2}215\times 1.5^2\\\Rightarrow I=241.875\ kgm^2

F=\frac{I\times \alpha}{r}\\\Rightarrow F=\frac{241.875\times 1.88495}{1.5}\\\Rightarrow F=303.9481875\ N

The magnitude of the force to stop the merry-go-round is 303.9481875 N

3 0
3 years ago
Rank the following in terms of increasing momentum:
professor190 [17]
It’s b because if you’re running at 5 miles per second being a 100kg weight is the fastest
5 0
4 years ago
Read 2 more answers
1. A sprinter races in the 100 meter dash. It takes him 10 second to reach the finish line
poizon [28]

Answer:

v = 10 m/s

Explanation:

Given that,

Distance covered by a sprinter, d = 100 m

Time taken by him to reach the finish line, t = 10 s

We need to find his average velocity. We know that velocity is equal to the distance covered divided by time taken. So,

v = d/t

v=\dfrac{100\ m}{10\ s}\\\\v=10\ m/s

Hence, his average velocity is 10 m/s.

6 0
3 years ago
A car of m = 1200. kg collides with a tree while traveling 60.0 mph. The collision occurs over a time period of 0.0500 seconds.
MrRissso [65]
You may know linear momentum is given by P= mass.velocity. Initially car is moving with some velocity so you know initial momentum of the car. Finally it comes to rest i.e final momentum of the car is 0. According to Newton's second law : Force = change in momentum /time. Applying this you'll get answer as 642840N. Hope it helped you. Revert back to me if you have any questions. Please check out the calculation it might be wrong!
5 0
3 years ago
Read 2 more answers
Using newtons second law of motion, how fast for 100 KG object accelerates 350 N of force is applied to
fenix001 [56]

Answer:

3.5m/s^2

Explanation:

From Newton's second Law of Motion

F = ma

Where F is the applied force, m is the mass of the object and a is the acceleration.

F = 350 N

Mass = 100kg

350N = 100×a

a = 350/100

a = 3.5m/s^2

The acceleration of the object will be 3.5m/s^2

6 0
3 years ago
Other questions:
  • What is the primary energy that powers a car
    8·1 answer
  • Calculate the quantity of heat required to melt 5kg of ice​
    12·1 answer
  • Construct a position-time graph that shows the forward progress of Sunny The Dog in a straight line for 20 meters over the cours
    14·1 answer
  • What is the tension in the cord after the system is released from rest? Both masses (A and B) are 10-kg.
    9·1 answer
  • What are day and night are produced by?
    12·2 answers
  • Find the change in internal energy, AU, if Q = 2.5 Joules and W = -30.5<br> Joules. *
    7·1 answer
  • What are four main ways weathering can happen
    13·1 answer
  • HELP ASAP PLZ
    11·2 answers
  • Which option BEST describes the position of the Sun, the Moon, and Earth during the new moon phase and the MOST LIKELY effect of
    14·1 answer
  • For a freely falling object dropped from rest, what is the acceleration at the
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!