Calculate the pressure due to sea water as density*depth.
That is,
pressure = (1025 kg/m^3)*((9400 m)*(9.8 m/s^2) = 94423000 Pa = 94423 kPa
Atmospheric pressure is 101.3 kPa
Total pressure is 94423 + 101.3 = 94524 kPa (approx)
The area of the window is π(0.44 m)^2 = 0.6082 m^2
The force on the window is
(94524 kPa)*(0.6082 m^2) = 57489.7 kN = 57.5 MN approx
To me, that sounds like the "Law of Conservation of Energy".
Answer:

Explanation:
First of all let's define the specific molar heat capacity.
(1)
Where:
Q is the released heat by the system
n is the number of moles
ΔT is the difference of temperature of the system
Now, we can find n with the molar mass (M) the mass of the compound (m).
Using (1) we have:


I hope it helps!
I assume that the ball is stationary (v=0) at point B, so its total energy is just potential energy, and it is equal to 7.35 J.
At point A, all this energy has converted into kinetic energy, which is:

And since K=7.35 J, we can find the velocity, v:
Answer:
0.68 m
Explanation:
We know that the speed of sound in air is a product of frequency and wavelength. Taking speed of sound in air as 340 m/s
V=frequency*wavelength
Then wavelength is given by 350/500=0.68 m
Therefore, to repeat constructive interference at the listener's ear, a distance of 0.68 m is needed