Answer:
1.44 m/s²
Explanation:
t = Time taken
u = Initial velocity
v = Final velocity
s = Displacement
a = Acceleration

This velocity will be the initial velocity of the car when it passes through the first building

The acceleration of the car is 1.44 m/s²
Answer:
simple, Volt =change in potential energy/Charge
the unit of energy is newton meter (Force*distance)
the unit of charge is coloumb
So, Volt/meter=newton* meter/coloumb*meter
=newton/coloumb (hence proved)
This unit is the potential drop per unit of length in a conductive wire with uniform resistance
If you only know its speed, that's not enough information to catch it. You could even chase it at DOUBLE that speed, and you'd never catch it if you were chasing in the wrong direction.
You also have to know the DIRECTION the runaway car is going, so that you can chase in the same direction.
Now that you know its speed AND direction, you know its velocity. You need that information to have any chance of catching it.
Answer:
In the explanation :)
Explanation:
Heat is a concept that is important to understand in various engineering fields. It is particularly relevant for civil, mechanical and chemical engineers because heat transfer plays a key role in material selection, machinery efficiency and reaction kinetics, respectively.