Answer:
The frequency of the piano string is <em>1059 Hz</em>.
Explanation:
The frequency beat (fb), 2 beats/second, is the absolute difference between the frequency of the tuning fork (1056 Hz) and the frequency of the piano string.
As the piano string gets tightened, the frequency beat becomes 3 beats/second.
Therefore,
fb = 
Answer:
Velocity is a change in displacement over change in time and uses the units m/s.
Both are rates of change and can be positive or negative.
Acceleration is a change in velocity over change in time and uses the units m/s².
Explanation:
Velocity is the change in displacement over change in time, this makes it a rate of change. It can be positive or negative because it is a vector quantity. It uses the units m/s because that is a displacement unit over a time unit.
Acceleration is the change in velocity over change in time, this makes it a rate of change. It can be positive or negative because it is also a vector quantity. It uses the units m/s² (m/s/s) because that is a velocity unit over a time unit.
Answer:

Explanation:
The mass of the man can be found by using the formula

f is the force
a is the acceleration
From the question we have

We have the final answer as
<h3>50 kg</h3>
Hope this helps you
Answer:
Vb = k Q / r r <R
Vb = k q / R³ (R² - r²) r >R
Explanation:
The electic potential is defined by
ΔV = - ∫ E .ds
We calculate the potential in the line of the electric pipe, therefore the scalar product reduces the algebraic product
VB - VA = - ∫ E dr
Let's substitute every equation they give us and we find out
r> R
Va = - ∫ (k Q / r²) dr
-Va = - k Q (- 1 / r)
We evaluate with it Va = 0 for r = infinity
Vb = k Q / r r <R
We perform the calculation of the power with the expression of the electric field that they give us
Vb = - int (kQ / R3 r) dr
We integrate and evaluate from the starting point r = R to the final point r <R
Vb = ∫kq / R³ r dr
Vb = k q / R³ (R² - r²)
This is the electric field in the whole space, the places of interest are r = 0, r = R and r = infinity