Answer:
Area=1.5(1.5)=2.25m^2
Force of gravity=10N
\begin{gathered}\\ \sf\longmapsto Pressure=\dfrac{Force}{Area}\end{gathered}
⟼Pressure=
Area
Force
\begin{gathered}\\ \sf\longmapsto Pressure=\dfrac{10}{2.25}\end{gathered}
⟼Pressure=
2.25
10
\begin{gathered}\\ \sf\longmapsto Pressure=4.4Pa\end{gathered}
⟼Pressure=4.4Pa
Answer:
16.9000000000000001 J
Explanation:
From the given information:
Let the initial kinetic energy from point A be
= 1.9000000000000001 J
and the final kinetic energy from point B be
= ???
The charge particle Q = 6 mC = 6 × 10⁻³ C
The change in the electric potential from point B to A;
i.e. V_B - V_A = -2.5 × 10³ V
According to the work-energy theorem:
-Q × ΔV = ΔK





I am sitting in my seat.
I am listening to my mp3 and reading my book.
My eyes are getting heavy. They start to close.
I try to stay awake, but it's no use.
I am so warm and comfortable and sleepy,
and I have just finished my dinner.
Finally I can't help it. Resistance is futile.
I give up, and fall deep asleep.
My head rests back against my soft, comfy seat.
My seat is in row 26 on the airplane I'm flying in
to visit my grandmother on the coast.
We are cruising at 560 miles an hour, bearing 280°,
at flight level 320 .
The temperature outside my window is -60°F .
For help with this answer, we look to Newton's second law of motion:
Force = (mass) x (acceleration)
Since the question seems to focus on acceleration, let's get
'acceleration' all alone on one side of the equation, so we can
really see what's going on.
Here's the equation again:
Force = (mass) x (acceleration)
Divide each side by 'mass',
and we have: Acceleration = (force) / (mass) .
Now the answer jumps out at us: The rate of acceleration of an object
is determined by the object's mass and by the strength of the net force
acting on the object.