Depends on how far away the event is and what the temperature is as this affects the speed of sound.
For example, let's say you're 600 meters away and the temperature has no affect.
The speed of sound would be roughly 340 m/s so the time it would take to hear the sound would be 600/340 = 1.76 seconds
The speed of light (c) is 3.0 X 10^8 m/s so the time it would take to see the event would be 600/3 X 10^8 = 2 X 10^-7
Subtract: 1.76 - (2 X 10^-7) = approx. 1.76
Option (ii) B is the correct option. The object on the moon has greater mass.
To resolve this, utilize the formulas Force = Mass * Acceleration.
The equation can be used to find the mass given the force in Newtons, using 9.8 m/s² for the acceleration of gravity of the earth and 1.6 m/s² for the moon.
Calculating the mass on earth:
30 N = 9.8 m/s² * mass
This results in a mass of 3.0 kg for the object on Earth.
Calculating the mass of the moon:
30 N = 1.6 m/s²2 * mass
Thus, the moon's object has a mass of 19. kg.
This can be explained by the fact that the earth has a stronger gravitational pull than the moon, producing more force per kilogram of mass. As a result, the moon's mass must be bigger to produce the same amount of force at a lower acceleration from gravity (1.6 m/s² vs. 9.8 m/s²).
To know more about Mass, refer to this link :
brainly.com/question/13386792
#SPJ9
Answer:
9.8 m/s/s
Explanation:
The numerical value, in meters per second squared, of the acceleration of an object experiencing true free fall is 9.8 m/s/s. This is called the acceleration due to gravity.
The speed downwards is 7 + (3*9.8)
7+ 29.4 = 36.4 m/s
Answer:
Explanation:
Neurons communicate via both electrical signals and chemical signals. The electrical signals are action potentials, which transmit the information from one of a neuron to the other; the chemical signals are neurotransmitters, which transmit the information from one neuron to the next.
The electrical signal travels down the axon to the axon terminals where it tells the vesicles to release the neurotransmitters into the synaptic cleft which travel to the receptors of the receiving cell which releases the second messengers