The force of gravity between the astronauts is 
Explanation:
The magnitude of the gravitational force between two objects is given by:
where
:
is the gravitational constant
are the masses of the two objects
r is the separation between them
In this problem, we have two astronauts, whose masses are:

While the separation between the astronauts is
r = 2 m
Substituting into the equation, we can find the gravitational force between the two astronauts:

Learn more about gravitational force:
brainly.com/question/1724648
brainly.com/question/12785992
#LearnwithBrainly
Answer:
2250N
Explanation:
W= mg,
where W= weight
m= mass
g= acceleration due to gravity
Given that the body is 90kg, m= 90kg.
Acceleration due to gravity of planet
= 2.5(10)
= 25 m/s²
Weight of body on planet
= 90(25)
= 2250N
*Mass is the amount of matter an object has and is constant (same on earth and the planet).
The period of the pendulum is 8.2 s
Explanation:
The period of a simple pendulum is given by the equation:

where
L is the length of the pendulum
g is the acceleration of gravity
T is the period
We notice that the period of a pendulum does not depend at all on its mass, but only on its length.
For the pendulum in this problem, we have
L = 16.8 m
and
(acceleration of gravity)
Therefore the period of this pendulum is

#LearnWithBrainly
Answer:
Decreases the transparency of the atmosphere to infrared light.
Explanation:
When a large amount of green-house gases are present in the atmosphere, the layer of these gases become opaque to infrared radiation and radiation from the sun get trapped into these gases molecules. These excited molecules radiate this energy into our own atmosphere and that why the temperature of Earth is rising due to the Green-House effect.
Answer:
0.6983 m/s
Explanation:
k = spring constant of the spring = 0.4 N/m
L₀ = Initial length = 11 cm = 0.11 m
L = Final length = 27 cm = 0.27 m
x = stretch in the spring = L - L₀ = 0.27 - 0.11 = 0.16 m
m = mass of the mass attached = 0.021 kg
v = speed of the mass
Using conservation of energy
Kinetic energy of mass = Spring potential energy
(0.5) m v² = (0.5) k x²
m v² = k x²
(0.021) v² = (0.4) (0.16)²
v = 0.6983 m/s