Answer:
please give me brainlist and follow
Explanation:
At the bottom of the hill, the baby carriage will likely have less momentum Therefore, option D is correct. Solution: ... Therefore, at the bottom of the hill, the heavy truck will have more momentum and baby carriage will have less momentum.
Distance ( say d ) is directly proportional to time ( say t ) .
mathematically ,
d = kt
where k is constant if proportionality .
Now differentiating the above equation with respect to time ,
we get ;
v = k
=> velocity is constant .
=> No acceleration .
Answer:
a = 3.33 m/s²
Explanation:
The horizontal acceleration of the dog can be found by using Newton's Second Law of Motion as follows:
F = ma
where,
F = Unbalanced force applied on the dog = 11 N - 10 N = 1 N
m = mass of the dog = 0.3 kg
a = horizontal acceleration of dog = ?
Therefore,
1 N = 0.3 kg(a)
a = 1 N/0.3 kg
<u>a = 3.33 m/s²</u>
Answer:
Fg = 4.2*10²² N
Explanation:
The gravitational force between any two masses, provided that can be approximated by point masses (comparing their diameters with the distance between them), obeys the Newton's Universal Law of Gravitation, which states that the force (always attractive) is proportional to the product of the masses and inversely proportional to the square of the distance between them (this as a consequence of our Universe being three-dimensional), as follows:

So, if one of the masses increases 6 times, the force between them will be directly 6 times larger, so the new magnitude of the force will be as follows:
Fg₂ = Fg₁*6 = 7*10²¹ N* 6 = 4.2*10²² N